Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Byzantine Vector Consensus in Complete Graphs

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Department of Computer Science, The University of Toronto

7, Dec 2017

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Byzantine Vector Consensus Model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Configurations:

- 1 fully connected network.
- **2** n processes, with at most f Byzantine processes.
- **3** d-dimensional real-valued vector as input.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Byzantine Vector Consensus Model

Configurations:

- 1 fully connected network.
- **2** n processes, with at most f Byzantine processes.
- 3 d-dimensional real-valued vector as input.

Conditions:

- **1** Termination: Each non-faulty process must terminate after a finite amount of time.
- **Agreement:** The decision (or output) vector at all the non-faulty processes must be identical.
- Solution Validity: The decision vector at each non-faulty process must be in the convex hull of the input vectors at the non-faulty processes.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Byzantine Vector Consensus Model

An example with 4 non-faulty processes and 1 byzantine process.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Solution?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Can we simply perform Byzantine Agreement on each dimension of the input vectors independently?

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Can we simply perform Byzantine Agreement on each dimension of the input vectors independently? **No!**

Solution?

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Can we simply perform Byzantine Agreement on each dimension of the input vectors independently? **No!**

Counterexample:

We have 4 process, and only one is faulty.

- *p*₀ : is faulty.
- $p_1:[1,0,0]$
- $p_2:[0,1,0]$
- $p_3:[0,0,1]$

Solution?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Solution?

Authors: Nitin H. Vaidya, Vijay K. Garg

Byzantine Vector

Consensus in Complete Graphs

Presented by: Chaoqi Wang

Conclusion

Can we simply perform Byzantine Agreement on each dimension of the input vectors independently? **No!** Counterexample:

if we perform Byzantine Agreement on each dimension of the vectors separately, then the processes may possibly agree on [0,0,0]. In this case, the *Validity* condition is violated!

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Results in the paper

In this paper, the authors obtain the following two results for BVC in *complete graph* while tolerating up to f Byzantine failures when the input is a d-dimensional vector:

• For a synchronous system, n > max(3f, (d+1)f) is necessary and sufficient for achieving BVC.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Results in the paper

In this paper, the authors obtain the following two results for BVC in *complete graph* while tolerating up to f Byzantine failures when the input is a d-dimensional vector:

- For a synchronous system, n > max(3f, (d+1)f) is necessary and sufficient for achieving BVC.
- 2 For an asynchronous system, n > (d + 2)f is necessary and sufficient to achieve *approximate* BVC.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary condition

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Theorem 1 n > max(3f, (d+1)f) is necessary for BVC in a synchronous system.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 1 n > max(3f, (d+1)f) is necessary for BVC in a synchronous system.

 When d = 1, n > 3f is a necessary condition for achieving Byzantine agreement in presence of up to f faults. (Already proved in the textbook!)

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

 When d = 1, n > 3f is a necessary condition for achieving Byzantine agreement in presence of up to f faults. (Already proved in the textbook!)

2 When $d \ge 2$, n > (d + 1)f is also a necessary condition.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Consider the validity condition: decision vector should be in the convex hull of non-fault processes' inputs !

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Consider the validity condition: decision vector should be in the convex hull of non-fault processes' inputs !

Claim: Suppose f = 1, since none of the non-faulty process know which process is faulty, the decision vector v must be in the convex hull of each multiset containing the input vectors of n - 1 of the processes (there are n such multiset, let its convex hull be Q_i for 1 = 1, 2, ..., n).

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Consider the validity condition: decision vector should be in the convex hull of non-fault processes' inputs !

Claim: Suppose f = 1, since none of the non-faulty process know which process is faulty, the decision vector v must be in the convex hull of each multiset containing the input vectors of n - 1 of the processes (there are n such multiset, let it be Q_i for 1 = 1, 2, ..., n).

1 p_i is the input of process *i*

2
$$\mathcal{P} = \{p_1, p_2, ..., p_n\}$$

- **3** $H(\mathcal{P})$ is the convex hull of \mathcal{P} .
- $Q_i = \mathcal{H}(\mathcal{P} \{p_i\})$
- **5** $v \in \cap_{i=1}^n Q_i$

Proof (Necessary)

・ロト ・ 一下・ ・ ヨト・

æ

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Proof:

1 f = 1, input vector p_i , $1 \le i \le d$, is a vector whose i-th element is 1 and the remaining are 0. p_{d+1} is the all-0 vector.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Proof (Necessary)

Proof:

1 f = 1, input vector p_i , $1 \le i \le d$, is a vector whose i-th element is 1 and the remaining are 0. p_{d+1} is the all-0 vector.

Let $\mathcal{P} = \{p_1, ..., p_{d+1}\}$ and Q_i is the convex hull of $\mathcal{P} - \{p_i\}$, then $\bigcap_{i=1}^{d+1} Q_i = \emptyset$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

Proof:

1 f = 1, input vector p_i , $1 \le i \le d$, is a vector whose i-th element is 1 and the remaining are 0. p_{d+1} is the all-0 vector.

Let $\mathcal{P} = \{p_1, ..., p_{d+1}\}$ and Q_i is the convex hull of $\mathcal{P} - \{p_i\}$, then $\bigcap_{i=1}^{d+1} Q_i = \emptyset$. Which leads to $n \le d+1$ is not sufficient. Therefore, $n \ge d+2$ is necessary for the case when f = 1.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f, (d + 1)f) is necessary for BVC in a synchronous system.

For the following two cases.

- **1** f = 1, the input vector for $p_i, 1 \le i \le d$, is a vector whose i-th element is 1 and the remaining are 0. p_{d+1} is the all-0 vector.
- f > 1, we can use the simulation approach, and thus f simulated process are implemented by a single process.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

- 1 ...
- 2 f > 1, we can use the simulation approach. That is, we use a single process to simulate f processes. Therefore, if a correct algorithm were to exist for tolerating up to f faults among (d + 1)f processes, then we can obtain a correct algorithm to tolerate a single failure among d + 1 processes. Contradict to the case f = 1.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

- 1 ...
- 2 f > 1, we can use the simulation approach. That is, we use a single process to simulate f processes. Therefore, if a correct algorithm were to exist for tolerating up to f faults among (d + 1)f processes, then we can obtain a correct algorithm to tolerate a single failure among d + 1 processes. Contradict to the case f = 1.

Therefore, n > max(3f, (d+1)f) is necessary for achieving BVC in a synchronous system.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Sufficient Condition

Theorem 2 n > max(3f, (d + 1)f) is sufficient for achieving BVC in a synchronous system.

Define:

- Y: a multiset of points. (e.g. $\mathsf{Y}=\{1,1,2,3\})$
- $\mathcal{H}(T)$: the convex hull of a multiset T.
- Γ(Y) = ∩_{T⊆Y,|T|=|Y|-f} ℋ(T): intersection of convex hulls of all subsets of Y of size |Y| − f.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Define:

- Y: a multiset of points.
- $\mathcal{H}(T)$: the convex hull of a multiset T.
- Γ(Y) = ∩_{T⊆Y,|T|=|Y|-f} ℋ(T): intersection of convex hulls of all subsets of Y of size |Y| − f.

Algorithm: $(n \ge max(3f + 1, (d + 1)f + 1))$

- Each process use the Byzantine agreement algorithm to decide the *d* elements one by one of all the *n* processes. Non-faulty processes can agree on the *d* elements of the input vector at each of the *n* processes, and thus collect such *n* vectors as *S*.
- 2 Each process chooses as its decision vector a point in Γ(S) using a deterministic algorithm.

Proof (Sufficient)

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Termination

• *Termination:* The Byzantine agreement algorithm terminates in finite time.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Agreement

- *Termination:* The Byzantine agreement algorithm terminates in finite time.
- Agreement: Agreement condition holds because all the non-faulty processes have identical multiset *S*, thus we can use a deterministic algorithm to pick the decision vector.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness of the algorithm

- *Termination:* The Byzantine agreement algorithm terminates in finite time.
- Agreement: Agreement condition holds because all the non-faulty processes have identical multiset *S*, thus we can use a deterministic algorithm to pick the decision vector.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Validity:

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Validity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 3 (Tverberg's Theorem) For an integer $f \ge 1$, and for every multiset Y containing at least (d + 1)f + 1 points in \mathbb{R}^d , there exists a partition $Y_1, ..., Y_{f+1}$ of Y into f + 1 non-empty multisets such that $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \neq \emptyset$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Validity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 3 (Tverberg's Theorem) For an integer $f \ge 1$, and for every multiset Y containing at least (d + 1)f + 1 points in \mathbb{R}^d , there exists a partition $Y_1, ..., Y_{f+1}$ of Y into f + 1 non-empty multisets such that $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \neq \emptyset$

- **1** f: an integer and ≥ 1 .
- 2 Y: a multiset, and |Y| = (d+1)f + 1.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Validity

Theorem 3 (Tverberg's Theorem) For an integer $f \ge 1$, and for every multiset Y containing at least (d + 1)f + 1 points in \mathbb{R}^d , there exists a partition $Y_1, ..., Y_{f+1}$ of Y into f + 1 non-empty multisets such that $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \neq \emptyset$

Figure 1: Illustration of a Tverberg partition.

Acknowledgment: The above example is inspired by an illustration authored by David Eppstein, which is available in the public domain from Wikipedia Commons.

Proof of Validity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Byzantine Vector

Consensus in Complete Graphs

Presented by: Chaoqi Wang

Conclusion

Lemma 1 For any multiset Y containing at least (d + 1)f + 1points in \mathbb{R}^d , $\Gamma(Y) \neq \emptyset$. (Recall that: $\Gamma(Y) = \cap_{T \subseteq Y, |T| = |Y| - f} \mathcal{H}(T)$)

Proof of Validity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Byzantine Vector

Consensus in Complete Graphs

Presented by: Chaoqi Wang

Conclusion

Lemma 1 For any multiset Y containing at least (d + 1)f + 1points in \mathbb{R}^d , $\Gamma(Y) \neq \emptyset$ (Recall that: $\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \mathcal{H}(T)$) **Proof:** 1. By Tverberg's theorem, there exists partition of Y

 $(|Y| \ge (d+1)f+1)$ into non-empty subsets $Y_1, ..., Y_{f+1}$, such that $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \neq \emptyset$.

Proof of Validity

Authors: Nitin H. Vaidya, Vijay K. Garg

Byzantine Vector

Consensus in Complete Graphs

Presented by: Chaoqi Wang

Conclusion

Lemma 1 For any multiset Y containing at least (d + 1)f + 1points in \mathbb{R}^d , $\Gamma(Y) \neq \emptyset$ (Recall that: $\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \mathcal{H}(T)$) **Proof:**

1. By Tverberg's theorem, there exists partition of Y $(|Y| \ge (d+1)f+1)$ into non-empty subsets $Y_1, ..., Y_{f+1}$, such that $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \neq \emptyset$.

2. Consider $\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \mathcal{H}(T)$. We have |T| = |Y| - f, and there are f + 1 subsets in the Tverberg's partition of Y. Therefore, at least one subset Y_i is in T. Hence, $\bigcap_{l=1}^{f+1} \mathcal{H}(Y_l) \subseteq \Gamma(Y)$, and thus $\Gamma(Y) \neq \emptyset$. \Box

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of Validity

- *Termination:* The Byzantine agreement algorithm terminates in finite time.
- Agreement: Agreement condition holds because all the non-faulty processes have identical multiset *S*, thus we can use a deterministic algorithm to pick the decision vector.
- Validity: With at most f faulty process, there at least one multiset T* must contain the inputs of only non-faulty processes. Thus, Γ(S) is in the convex hull of the inputs of non-faulty processes. Hence, validity is satisfied.

Conclusion

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Vector Consensus in Complete Graphs Authors: Nitin

Byzantine

H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

For a synchronous system, n > max(3f, (d+1)f) is necessary and sufficient for achieving BVC.

Byzantine
Vector
Consensus in
Complete
Graphs

Further Reading

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

See next slide for the Asynchronous case.

Byzantine
Vector
Consensus in
Complete
Graphs

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Background

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How about in an asynchronous system?

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Background

How about in an asynchronous system?

- In an asynchronous system, *exact* consensus is impossible in the presence of faulty processes.
- But we can prove that n ≥ (d + 2)f + 1 is necessary and sufficient to achieve *approximate* Byzantine vector consensus.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof (Necessary)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem: $n \ge (d+2)f + 1$ is necessary for approximate BVC in an asynchronous system.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem: $n \ge (d+2)f + 1$ is necessary for approximate BVC in an asynchronous system.

We only need to consider the case when f = 1, and for the cases that $f \ge 2$, we can use a simulation similar to the proof of Theorem 1.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem: $n \ge (d+2)f + 1$ is necessary for approximate BVC in an asynchronous system.

Suppose that f = 1, and n = d + 2. We can see that the following d+1 scenarios cannot be ditinguished by processes $p_1, p_2, ..., p_{d+1}$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem: $n \ge (d+2)f + 1$ is necessary for approximate BVC in an asynchronous system.

Suppose that f = 1, and n = d + 2. We can see that the following d+1 scenarios cannot be ditinguished by processes $p_1, p_2, ..., p_{d+1}$.

- Process p_{d+2} has crashed.
- Process p_j $(j \neq i, 1 \leq j \leq d+1)$ is faulty, and process p_{d+2} is slow.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

- Process p_{d+2} has crashed.
- Process p_j $(j \neq i, 1 \leq j \leq d+1)$ is faulty, and process p_{d+2} is slow.

In order to meet the validity condition, the decided vector of p_i must be in the intersection of convex hull of all non-faulty processes' vectors. For the first case, it should be in the convex hull of X_i^{d+2} . For the other d cases, it should be in the convex hull of X_i^{d} . Where,

$$X_i^j = \{x_k : k \neq j \text{ and } 1 \le k \le d+1\}$$

Besides, we have:

$$\mathcal{H}(X_i^j) \subseteq \mathcal{H}(X_i^{d+2})$$

Authors: Nitin H. Vaidya, Vijay K. Garg Presented by: Besides, we have:

 $\mathcal{H}(X_i^j) \subseteq \mathcal{H}(X_i^{d+2})$

Chaoqi Wang

Therefore, the decision vector of p_i must be in

 $\cap_{j\neq i,1\leq j\leq d+1}\mathcal{H}(X_i^j)$

so as to meet the validity condition.

Necessary (Cnt.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Besides, we have:

$$\mathcal{H}(X_i^j) \subseteq \mathcal{H}(X_i^{d+2})$$

Therefore, the decision vector of p_i must be in

 $\cap_{j\neq i,1\leq j\leq d+1}\mathcal{H}(X_i^j)$

so as to meet the validity condition. Consider the following example:

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

Besides, we have:

$$\mathcal{H}(X_i^j) \subseteq \mathcal{H}(X_i^{d+2})$$

Therefore, the decision vector of p_i must be in

$$\cap_{j \neq i, 1 \leq j \leq d+1} \mathcal{H}(X_i^j)$$

so as to meet the validity condition. Consider the following example: $\label{eq:condition}$

The decision vector of p_i must be x_i , and thus for each pair of processes in $p_1, ..., p_{d+1}$ differ by 4ϵ in at least one element!!

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Necessary (Cnt.)

So far, we have proved that $n \le d + 2$ is not sufficient, and for the case when f > 1, we can use a simulation similar to the proof of Theorem 1, and show that $n \le (d+2)f$ is also not sufficient. Thus, $n \ge (d+2)f + 1$ is necessary for $f \ge 1$.

In the following, we will present a prove that $n \ge (d+2)f + 1$ is sufficient by proving the correctness of an algorithm.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Abraham, Amit and Dolev's (AAD) algorithm

Abraham, Amit and Dolev's (AAD) algorithm aims to solve the approximate *scalar* consensus problem in an asynchronous system. It could be viewed as consisting of three components:

- AAD componend #1: each process communicate its state vector v_i[t 1] to other processes. AAD guarantees that for each non-faulty process p_i in round t obtains a set B_i[t] containing at least n f tuples of the form (p_j, w_j, t) such that the following properties hold:
 - If p_i , p_j are non-faulty, then $|B_i[t] \cap B_j[t]| \ge n-f$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Abraham, Amit and Dolev's (AAD) algorithm

Abraham, Amit and Dolev's (AAD) algorithm aims to solve the approximate *scalar* consensus problem in an asynchronous system. It could be viewed as consisting of three components:

- AAD componend #1: each process communicate its state vector v_i[t 1] to other processes. AAD guarantees that for each non-faulty process p_i in round t obtains a set B_i[t] containing at least n f tuples of the form (p_j, w_j, t) such that the following properties hold:
 - If p_i , p_j are non-faulty, then $|B_i[t] \cap B_j[t]| \ge n f$
 - If (p_l, w_l, t) and (p_k, w_k, t) are both in $B_i[t]$, then $p_l \neq p_k$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Abraham, Amit and Dolev's (AAD) algorithm

Abraham, Amit and Dolev's (AAD) algorithm aims to solve the approximate *scalar* consensus problem in an asynchronous system. It could be viewed as consisting of three components:

- AAD component #1: each process communicate its state vector v_i[t 1] to other processes. AAD guarantees that for each non-faulty process p_i in round t obtains a set B_i[t] containing at least n f tuples of the form (p_j, w_j, t) such that the following properties hold:
 - If p_i , p_j are non-faulty, then $|B_i[t] \cap B_j[t]| \ge n-f$
 - If (p_l, w_l, t) and (p_k, w_k, t) are both in $B_i[t]$, then $p_l \neq p_k$.

• If p_k is non-faulty, and $(p_k, w_k, t) \in B_i[t]$, then $w_k = v_k[t-1]$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Abraham, Amit and Dolev's (AAD) algorithm

- AAD component #1: each process communicate its state vector v_i[t 1] to other processes. AAD guarantees that for each non-faulty process p_i in round t obtains a set B_i[t] containing at least n f tuples of the form (p_j, w_j, t).
- AAD component #2: Process p_i, having obtained B_i[t], computes its new state v_i[t] as a function of the tuples in B_i[t].

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Abraham, Amit and Dolev's (AAD) algorithm

- AAD component #1: each process communicate its state vector v_i[t 1] to other processes. AAD guarantees that for each non-faulty process p_i in round t obtains a set B_i[t] containing at least n f tuples of the form (p_j, w_j, t)
- AAD component #2: Process p_i, having obtained B_i[t], computes its new state v_i[t] as a function of the tuples in B_i[t].
- **AAD component #3**: AAD also includes a sub-algorithm that allows the non-faulty processes to determine when to terminate their computation.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Asynchronous Approximate BVC algorithm $(n \ge (d+2)f + 1)$

1. In the *t*-th round, each non-faulty process uses the mechanism in *Component* #1 of the AAD algorithm to obtain a set $B_i[t]$ containing at least n - f tuples, such that $B_i[t]$ satisfies properties 1, 2, and 3 described earlier for AAD. While these properties were proved in [1] for scalar states, the correctness of the properties also holds when \mathbf{v}_i is a vector.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Asynchronous Approximate BVC algorithm $(n \ge (d+2)f + 1)$

- 1. In the *t*-th round, each non-faulty process uses the mechanism in *Component* #1 of the AAD algorithm to obtain a set $B_i[t]$ containing at least n f tuples, such that $B_i[t]$ satisfies properties 1, 2, and 3 described earlier for AAD. While these properties were proved in [1] for scalar states, the correctness of the properties also holds when \mathbf{v}_i is a vector.
 - 2. In the *t*-th round, after obtaining set $B_i[t]$, process p_i computes its new state $\mathbf{v}_i[t]$ as follows. Form a multiset Z_i using the steps below:
 - Initialize Z_i as empty.
 - For each $C \subseteq B_i[t]$ such that $|C| = n f \ge (d+1)f + 1$, add to Z_i one deterministically chosen point from $\Gamma(\Phi(C))$. Since $|\Phi(C)| = |C| \ge (d+1)f + 1$, by Lemma 1, $\Gamma(\Phi(C))$ is non-empty.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Asynchronous Approximate BVC algorithm $(n \ge (d+2)f + 1)$

- 1. In the *t*-th round, each non-faulty process uses the mechanism in *Component* #1 of the AAD algorithm to obtain a set $B_i[t]$ containing at least n f tuples, such that $B_i[t]$ satisfies properties 1, 2, and 3 described earlier for AAD. While these properties were proved in [1] for scalar states, the correctness of the properties also holds when \mathbf{v}_i is a vector.
 - 2. In the *t*-th round, after obtaining set $B_i[t]$, process p_i computes its new state $\mathbf{v}_i[t]$ as follows. Form a multiset Z_i using the steps below:
 - Initialize Z_i as empty.
 - For each $C \subseteq B_i[t]$ such that $|C| = n f \ge (d+1)f + 1$, add to Z_i one deterministically chosen point from $\Gamma(\Phi(C))$. Since $|\Phi(C)| = |C| \ge (d+1)f + 1$, by Lemma 1, $\Gamma(\Phi(C))$ is non-empty.

Note that $|Z_i| = {|B_i[t]| \choose n-f} \leq {n \choose n-f}$. Calculate

$$\mathbf{v}_i[t] = \frac{\sum_{\mathbf{z}\in Z_i} \mathbf{z}}{|Z_i|} \tag{9}$$

3. Each non-faulty process terminates after $1 + \lceil \log_{1/(1-\gamma)} \frac{U-\nu}{\epsilon} \rceil$ rounds, where γ ($0 < \gamma < 1$) is a constant defined later in (11). Recall that ϵ is the parameter of the ϵ -agreement condition.

Note: $\Phi(B) = \{w_k : (p_k, w_k, t) \in B\}$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Without loss of generality, suppose that m processes, $p_1, p_2, ..., p_m$ are non-faulty, where $m \ge n - f$, and the remaining n - m processes are faulty.

Definition 1: A point **r** is said to be valid if there exists a representation of **r** as a convex combination of $v_k[t-1]$, $1 \le k \le m$. That is, there exists constants β_k , such that $0 \le \beta_k \le 1$ and $\sum_{1 \le k \le m} \beta_k = 1$, and

$$r = \sum_{1 \le k \le m} \beta_k v_k [t-1]$$

In general, there may exits multiple such convex combination representations of a valid point *r*. Moreover, it's obvious that at least one of the weights in any such convex combination must be $\geq \frac{1}{m} \geq \frac{1}{n}$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

In the following, we will break the proof into three parts.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the following, we will break the proof into several parts. **1** For any non-faulty process p_i , consider any $C \subseteq B_i[t]$, such that |C| = n - f. Because $n \ge (d+2)f + 1$, and thus $|\Phi(C)| = |C| = n - f \ge (d+1)f + 1$, by Lemma 1, $\Gamma(\Phi(C)) \ne \emptyset$. Therefore, Z_i will contain a point from $\Gamma(\Phi(C))$ for each C.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

In the following, we will break the proof into several parts.

1 For any non-faulty process p_i , consider any $C \subseteq B_i[t]$, such that |C| = n - f. Because $n \ge (d+2)f + 1$, and thus $|\Phi(C)| = |C| = n - f \ge (d+1)f + 1$, by Lemma 1, $\Gamma(\Phi(C)) \ne \emptyset$. Therefore, Z_i will contain a point from $\Gamma(\Phi(C))$ for each C.

Because there are at most f faulty processes. Then there exists at least one (n - 2f)-size subset of $\Phi(C)$ must be a subset of $\{v_1[t-1], v_2[t-1], ..., v_m[t-1]\}$. Therefore, all points in $\Gamma(\Phi(C))$ must be valid, and thus all the points in Z_i computed in *Step* 2 must be valid.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

In the following, we will break the proof into several parts. **1** All the points in Z_i computed in Step 2 must be valid. 2 Because $|B_i[t] \cap B_i[t] \ge n - f$. Therefore, there exists a set $C_{ii} \subseteq B_i \cap B_i$ such that $|C_{ii}| = n - f$. Therefore, Z_i and Z_i both contain one **identical** point from $\Gamma(\Phi(C_{ii}))$. Suppose the point is z_{ii} , as shown in Part 1, z_{ii} must be valid. Therefore, there must exists a non-faulty process, say $p_{g(i,j,t)}$, such that the weight associated with $v_{g(i,j,t)}[t-1]$ in the convex combination for z_{ij} is $\geq \frac{1}{m} \geq \frac{1}{n}$.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

In the following, we will break the proof into several parts. **1** All the points in Z_i computed in Step 2 must be valid. 2 Because $|B_i[t] \cap B_i[t] \ge n - f$. Therefore, there exists a set $C_{ii} \subseteq B_i \cap B_i$ such that $|C_{ii}| = n - f$. Therefore, Z_i and Z_i both contain one **identical** point from $\Gamma(\Phi(C_{ii}))$. Suppose the point is z_{ii} , as shown in Part 1, z_{ii} must be valid. Therefore, there must exists a non-faulty process, say $p_{g(i,i,t)}$, such that the weight associated with $v_{g(i,j,t)}[t-1]$ in the convex combination for z_{ij} is $> \frac{1}{m} > \frac{1}{n}$. **3** Because $v_i[t]$ is computed as the average of the points in Z_i , and $|Z_i| = {|B_i| \choose n-f} \leq {n \choose n-f}$. Therefore, the weight of $v_{g(i,j,t)}[t-1]$ in $v_i[t]$ is $\geq \frac{1}{n(l^n_i)}$. Define $\gamma = \frac{1}{n\binom{n}{n-f}}$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Because we have proved that, at time step t, every z_k in Z_i is valid, and z_k can be treated as a convex combination of non-faulty processes' state vectors. Therefore, $v_i[t] = \frac{\sum_{z \in Z_i z}}{|Z_i|}$ can also be represented as a convex combination of non-faulty processes' state vectors (i.e. $\{v_1[t-1], ..., v_m[t-1]\}$).

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Because we have proved that, at time step t, every z_k in Z_i is valid, and z_k can be treated as a convex combination of non-faulty processes' state vectors. Therefore, $v_i[t] = \frac{\sum_{z \in Z_i z}}{|Z_i|}$ can also be represented as a convex combination of non-faulty processes' state vectors (i.e. $\{v_1[t-1], ..., v_m[t-1]\}$).

Therefore, we can get that for any non-faulty process's $v_i[t]$ is a convex combination of $\{v_1[0], v_2[0], ..., v_m[0]\}$, implying that the proposed algorithm satisfies the **validity** condition for approximate consensus. (note, $v_k[0]$ is the process p_k 's input vector.)

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Therefore, we can get that for any non-faulty process's $v_i[t]$ is a convex combination of $\{v_1[0], v_2[0], ..., v_m[0]\}$, implying that the proposed algorithm satisfies the **validity** condition for approximate consensus. (note, $v_k[0]$ is the process p_k 's input vector.)

Let $v_{il}[t]$ denote the l - th element of the vector of the state $v_i[t]$ of process p_i . Define $\Omega_l[t] = max_{1 \le k \le m}v_{kl}[t]$, the maximum value of *l*-th element of the vector state of non-faulty processes. Similiarily, $\mu_l[t] = min_{1 \le k \le m}v_{kl}[t]$. We have that:

$$\Omega_I[t] - \mu_I[t] \leq (1-\gamma)(\Omega_I[t-1] - \mu_I[t-1])$$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Let $v_{il}[t]$ denote the l - th element of the vector of the state $v_i[t]$ of process p_i . Define $\Omega_l[t] = max_{1 \le k \le m} v_{kl}[t]$, the maximum value of *l*-th element of the vector state of non-faulty processes. Similiarily, $\mu_l[t] = min_{1 \le k \le m} v_{kl}[t]$. We have that:

$$\Omega_I[t] - \mu_I[t] \leq (1 - \gamma)(\Omega_I[t - 1] - \mu_I[t - 1])$$

Then we can repeat until $(1 - \gamma)^t (\Omega_l[0] - \mu_l[0]) < \epsilon$, thus we can get

$$t > log_{1/(1-\gamma)} rac{\Omega_l[0] - \mu_l[0]}{\epsilon}$$

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

Let $v_{il}[t]$ denote the l - th element of the vector of the state $v_i[t]$ of process p_i . Define $\Omega_l[t] = max_{1 \le k \le m} v_{kl}[t]$, the maximum value of *l*-th element of the vector state of non-faulty processes. Similiarily, $\mu_l[t] = min_{1 \le k \le m} v_{kl}[t]$. We have that:

$$\Omega_{I}[t] - \mu_{I}[t] \le (1 - \gamma)(\Omega_{I}[t - 1] - \mu_{I}[t - 1])$$

Then we can repeat until $(1 - \gamma)^t (\Omega_I[0] - \mu_I[0]) < \epsilon$, thus we can get

$$t > \log_{1/(1-\gamma)} \frac{\Omega_l[0] - \mu_l[0]}{\epsilon}$$

Simply assume that U is the upper bound of the input value, and v is the lower bound of the input value. We can eventually get that for each non-faulty process, it will terminate after $1 + \log_{1/(1-\gamma)} \frac{U-v}{\epsilon}$, and ϵ -agreement is ensured.

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Proof of the correctness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In conclusion, the proposed algorithm can terminate within finite steps and the validity and the ϵ -agreement are both satisfied. Therefore, $n \ge (d+2)f + 1$ is sufficient for approximate consensus in asynchronous systems.

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Byzantine Vector Consensus in Complete Graphs

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

- For a synchronous system, n ≥ max(3f + 1, (d + 1)f + 1) is necessary and sufficient for achieving Byzantine vector consensus.
- **2** For an asynchronous system, $n \ge (d+2)f + 1$ is necessary and sufficient to achieve *approximate* BVC.

Byzantine
Vector
Consensus in
Complete
Graphs

Authors: Nitin H. Vaidya, Vijay K. Garg

Presented by: Chaoqi Wang

Conclusion

Thanks! QA?

QA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ