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Byzantine Vector Consensus Model

Configurations:

1 fully connected network.

2 n processes, with at most f Byzantine processes.

3 d-dimensional real-valued vector as input.
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Conclusion

Byzantine Vector Consensus Model

Configurations:

1 fully connected network.

2 n processes, with at most f Byzantine processes.

3 d-dimensional real-valued vector as input.

Conditions:

1 Termination: Each non-faulty process must terminate
after a finite amount of time.

2 Agreement: The decision (or output) vector at all the
non-faulty processes must be identical.

3 Validity: The decision vector at each non-faulty process
must be in the convex hull of the input vectors at the
non-faulty processes.
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Conclusion

Byzantine Vector Consensus Model

An example with 4 non-faulty processes and 1 byzantine
process.
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Solution?

Can we simply perform Byzantine Agreement on each
dimension of the input vectors independently?
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Conclusion

Solution?

Can we simply perform Byzantine Agreement on each
dimension of the input vectors independently?
No!
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Conclusion

Solution?

Can we simply perform Byzantine Agreement on each
dimension of the input vectors independently?
No!
Counterexample:
We have 4 process, and only one is faulty.
p0 : is faulty.
p1 : [1, 0, 0]
p2 : [0, 1, 0]
p3 : [0, 0, 1]
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Conclusion

Solution?

Can we simply perform Byzantine Agreement on each
dimension of the input vectors independently?
No!
Counterexample:

if we perform Byzantine Agreement on each dimension of the
vectors separately, then the processes may possibly agree on
[0, 0, 0]. In this case, the Validity condition is violated!
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Results in the paper

In this paper, the authors obtain the following two results for
BVC in complete graph while tolerating up to f Byzantine
failures when the input is a d-dimensional vector:

1 For a synchronous system, n > max(3f , (d + 1)f ) is
necessary and sufficient for achieving BVC.
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Results in the paper

In this paper, the authors obtain the following two results for
BVC in complete graph while tolerating up to f Byzantine
failures when the input is a d-dimensional vector:

1 For a synchronous system, n > max(3f , (d + 1)f ) is
necessary and sufficient for achieving BVC.

2 For an asynchronous system, n > (d + 2)f is necessary
and sufficient to achieve approximate BVC.
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Necessary condition

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

1 When d = 1, n > 3f is a necessary condition for achieving
Byzantine agreement in presence of up to f faults.
(Already proved in the textbook!)
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

1 When d = 1, n > 3f is a necessary condition for achieving
Byzantine agreement in presence of up to f faults.
(Already proved in the textbook!)

2 When d ≥ 2, n > (d + 1)f is also a necessary condition.



Byzantine
Vector

Consensus in
Complete
Graphs

Authors: Nitin
H. Vaidya,

Vijay K. Garg

Presented by:
Chaoqi Wang

Conclusion

Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Consider the validity condition: decision vector should be in
the convex hull of non-fault processes’ inputs !
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Consider the validity condition: decision vector should be in
the convex hull of non-fault processes’ inputs !

Claim: Suppose f = 1, since none of the non-faulty process
know which process is faulty, the decision vector v must be in
the convex hull of each multiset containing the input vectors of
n − 1 of the processes (there are n such multiset, let its convex
hull be Qi for 1 = 1, 2, ..., n).
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Consider the validity condition: decision vector should be in
the convex hull of non-fault processes’ inputs !

Claim: Suppose f = 1, since none of the non-faulty process
know which process is faulty, the decision vector v must be in
the convex hull of each multiset containing the input vectors of
n − 1 of the processes (there are n such multiset, let it be Qi

for 1 = 1, 2, ..., n).

1 pi is the input of process i

2 P = {p1, p2, ..., pn}
3 H(P) is the convex hull of P.

4 Qi = H(P − {pi})
5 v ∈ ∩ni=1Qi
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Proof (Necessary)
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Proof:

1 f = 1, input vector pi , 1 ≤ i ≤ d , is a vector whose i-th
element is 1 and the remaining are 0. pd+1 is the all-0
vector.
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Proof:

1 f = 1, input vector pi , 1 ≤ i ≤ d , is a vector whose i-th
element is 1 and the remaining are 0. pd+1 is the all-0
vector.

Let P = {p1, .., pd+1} and Qi is the convex hull of P − {pi},
then ∩d+1

i=1 Qi = ∅.
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

Proof:

1 f = 1, input vector pi , 1 ≤ i ≤ d , is a vector whose i-th
element is 1 and the remaining are 0. pd+1 is the all-0
vector.

Let P = {p1, .., pd+1} and Qi is the convex hull of P − {pi},
then ∩d+1

i=1 Qi = ∅.
Which leads to n ≤ d + 1 is not sufficient. Therefore,
n ≥ d + 2 is necessary for the case when f = 1.
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Proof (Necessary)

Theorem 1 n > max(3f , (d + 1)f ) is necessary for BVC in a
synchronous system.

For the following two cases.

1 f = 1, the input vector for pi , 1 ≤ i ≤ d , is a vector whose
i-th element is 1 and the remaining are 0. pd+1 is the all-0
vector.

2 f > 1, we can use the simulation approach, and thus f
simulated process are implemented by a single process.
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Proof (Necessary)

1 ...

2 f > 1, we can use the simulation approach. That is, we
use a single process to simulate f processes. Therefore, if
a correct algorithm were to exist for tolerating up to f
faults among (d + 1)f processes, then we can obtain a
correct algorithm to tolerate a single failure among d + 1
processes. Contradict to the case f = 1.
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Conclusion

Proof (Necessary)

1 ...

2 f > 1, we can use the simulation approach. That is, we
use a single process to simulate f processes. Therefore, if
a correct algorithm were to exist for tolerating up to f
faults among (d + 1)f processes, then we can obtain a
correct algorithm to tolerate a single failure among d + 1
processes. Contradict to the case f = 1.

Therefore, n > max(3f , (d + 1)f ) is necessary for achieving
BVC in a synchronous system.�
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Proof of Sufficient Condition

Theorem 2 n > max(3f , (d + 1)f ) is sufficient for achieving
BVC in a synchronous system.

Define:

• Y : a multiset of points. (e.g. Y = {1, 1, 2, 3})
• H(T ): the convex hull of a multiset T .

• Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ): intersection of convex hulls
of all subsets of Y of size |Y | − f .

.
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Proof (Sufficient)

Define:

• Y : a multiset of points.

• H(T ): the convex hull of a multiset T .

• Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ): intersection of convex hulls
of all subsets of Y of size |Y | − f .

Algorithm: (n ≥ max(3f + 1, (d + 1)f + 1))

1 Each process use the Byzantine agreement algorithm to
decide the d elements one by one of all the n processes.
Non-faulty processes can agree on the d elements of the
input vector at each of the n processes, and thus collect
such n vectors as S .

2 Each process chooses as its decision vector a point in Γ(S)
using a determinstic algorithm.
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Proof of Termination

• Termination: The Byzantine agreement algorithm
terminates in finite time.

•
•
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Proof of Agreement

• Termination: The Byzantine agreement algorithm
terminates in finite time.

• Agreement: Agreement condition holds because all the
non-faulty processes have identical multiset S , thus we can
use a deterministic algorithm to pick the decision vector.
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Proof of the correctness of the
algorithm

• Termination: The Byzantine agreement algorithm
terminates in finite time.

• Agreement: Agreement condition holds because all the
non-faulty processes have identical multiset S , thus we can
use a deterministic algorithm to pick the decision vector.

• Validity:
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Proof of Validity

Theorem 3 (Tverberg’s Theorem) For an integer f ≥ 1, and
for every multiset Y containing at least (d + 1)f + 1 points in
Rd , there exists a partition Y1, ...,Yf+1 of Y into f + 1
non-empty multisets such that ∩f+1

l=1H(Yl) 6= ∅
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Proof of Validity

Theorem 3 (Tverberg’s Theorem) For an integer f ≥ 1, and
for every multiset Y containing at least (d + 1)f + 1 points in
Rd , there exists a partition Y1, ...,Yf+1 of Y into f + 1
non-empty multisets such that ∩f+1

l=1H(Yl) 6= ∅

1 f : an integer and ≥ 1.

2 Y : a multiset, and |Y | = (d + 1)f + 1.

3 ∩f+1
l=1H(Yl) 6= ∅, for some partition Y1, ...,Yf+1 of Y .

(Note: ∪f+1
l=1Yl = Y )
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Proof of Validity

Theorem 3 (Tverberg’s Theorem) For an integer f ≥ 1, and
for every multiset Y containing at least (d + 1)f + 1 points in
Rd , there exists a partition Y1, ...,Yf+1 of Y into f + 1
non-empty multisets such that ∩f+1

l=1H(Yl) 6= ∅
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Proof of Validity

Lemma 1 For any multiset Y containing at least (d + 1)f + 1
points in Rd , Γ(Y ) 6= ∅.
(Recall that: Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ))
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Proof of Validity

Lemma 1 For any multiset Y containing at least (d + 1)f + 1
points in Rd , Γ(Y ) 6= ∅
(Recall that: Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ))
Proof:
1. By Tverberg’s theorem, there exists partition of Y
(|Y | ≥ (d + 1)f + 1) into non-empty subsets Y1, ...,Yf+1, such
that ∩f+1

l=1H(Yl) 6= ∅.
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Proof of Validity

Lemma 1 For any multiset Y containing at least (d + 1)f + 1
points in Rd , Γ(Y ) 6= ∅
(Recall that: Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ))
Proof:
1. By Tverberg’s theorem, there exists partition of Y
(|Y | ≥ (d + 1)f + 1) into non-empty subsets Y1, ...,Yf+1, such
that ∩f+1

l=1H(Yl) 6= ∅.

2. Consider Γ(Y ) = ∩T⊆Y ,|T |=|Y |−fH(T ).
We have |T | = |Y | − f , and there are f + 1 subsets in the
Tverberg’s partition of Y . Therefore, at least one subset Yi is
in T . Hence, ∩f+1

l=1H(Yl) ⊆ Γ(Y ), and thus Γ(Y ) 6= ∅. �
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Proof of Validity

• Termination: The Byzantine agreement algorithm
terminates in finite time.

• Agreement: Agreement condition holds because all the
non-faulty processes have identical multiset S , thus we can
use a deterministic algorithm to pick the decision vector.

• Validity: With at most f faulty process, there at least one
multiset T ∗ must contain the inputs of only non-faulty
processes. Thus, Γ(S) is in the convex hull of the inputs of
non-faulty processes. Hence, validity is satisfied.
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Conclusion

For a synchronous system, n > max(3f , (d + 1)f ) is necessary
and sufficient for achieving BVC.
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Further Reading

See next slide for the Asynchronous case.
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Background

How about in an asynchronous system?
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Background

How about in an asynchronous system?

• In an asynchronous system, exact consensus is impossible
in the presence of faulty processes.

• But we can prove that n ≥ (d + 2)f + 1 is necessary and
sufficient to achieve approximate Byzantine vector
consensus.
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Proof (Necessary)

Theorem:n ≥ (d + 2)f + 1 is necessary for approximate BVC
in an asynchronous system.
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Conclusion

Necessary (Cnt.)

Theorem:n ≥ (d + 2)f + 1 is necessary for approximate BVC
in an asynchronous system.
We only need to consider the case when f = 1, and for the
cases that f ≥ 2, we can use a simulation similar to the proof
of Theorem 1.
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Conclusion

Necessary (Cnt.)

Theorem:n ≥ (d + 2)f + 1 is necessary for approximate BVC
in an asynchronous system.

Suppose that f = 1, and n = d + 2. We can see that the
following d+1 scenarios cannot be ditinguished by processes
p1, p2, ..., pd+1.
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Conclusion

Necessary (Cnt.)

Theorem:n ≥ (d + 2)f + 1 is necessary for approximate BVC
in an asynchronous system.

Suppose that f = 1, and n = d + 2. We can see that the
following d+1 scenarios cannot be ditinguished by processes
p1, p2, ..., pd+1.

• Process pd+2 has crashed.

• Process pj (j 6= i , 1 ≤ j ≤ d + 1) is faulty, and process
pd+2 is slow.
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Necessary (Cnt.)

• Process pd+2 has crashed.

• Process pj (j 6= i , 1 ≤ j ≤ d + 1) is faulty, and process
pd+2 is slow.

In order to meet the validity condition, the decided vector of pi
must be in the intersection of convex hull of all non-faulty
processes’ vectors. For the first case, it should be in the convex
hull of X d+2

i . For the other d cases, it should be in the convex

hull of X j
i . Where,

X j
i = {xk : k 6= j and 1 ≤ k ≤ d + 1}

.
Besides, we have:

H(X j
i ) ⊆ H(X d+2

i )
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Necessary (Cnt.)

Besides, we have:

H(X j
i ) ⊆ H(X d+2

i )

Therefore, the decision vector of pi must be in

∩j 6=i ,1≤j≤d+1H(X j
i )

so as to meet the validity condition.
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Conclusion

Necessary (Cnt.)

Besides, we have:

H(X j
i ) ⊆ H(X d+2

i )

Therefore, the decision vector of pi must be in

∩j 6=i ,1≤j≤d+1H(X j
i )

so as to meet the validity condition. Consider the following
example:
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Conclusion

Necessary (Cnt.)

Besides, we have:

H(X j
i ) ⊆ H(X d+2

i )

Therefore, the decision vector of pi must be in

∩j 6=i ,1≤j≤d+1H(X j
i )

so as to meet the validity condition. Consider the following
example:

The decision vector of pi must be xi , and thus for each pair of
processes in p1, ..., pd+1 differ by 4ε in at least one element!!
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Necessary (Cnt.)

So far, we have proved that n ≤ d + 2 is not sufficient, and for
the case when f > 1, we can use a simulation similar to the
proof of Theorem 1, and show that n ≤ (d + 2)f is also not
sufficient. Thus, n ≥ (d + 2)f + 1 is necessary for f ≥ 1.

In the following, we will present a prove that n ≥ (d + 2)f + 1
is sufficient by proving the correctness of an algorithm.
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Abraham, Amit and Dolev’s
(AAD) algorithm

Abraham, Amit and Dolev’s (AAD) algorithm aims to solve the
approximate scalar consensus problem in an asynchronous
system. It could be viewed as consisting of three components:

• AAD componend #1: each process communicate its
state vector vi [t − 1] to other processes. AAD guarantees
that for each non-faulty process pi in round t obtains a set
Bi [t] containing at least n − f tuples of the form
(pj ,wj , t) such that the following properties hold:

• If pi , pj are non-faulty, then |Bi [t] ∩ Bj [t]| ≥ n − f
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Conclusion

Abraham, Amit and Dolev’s
(AAD) algorithm

Abraham, Amit and Dolev’s (AAD) algorithm aims to solve the
approximate scalar consensus problem in an asynchronous
system. It could be viewed as consisting of three components:

• AAD componend #1: each process communicate its
state vector vi [t − 1] to other processes. AAD guarantees
that for each non-faulty process pi in round t obtains a set
Bi [t] containing at least n − f tuples of the form
(pj ,wj , t) such that the following properties hold:

• If pi , pj are non-faulty, then |Bi [t] ∩ Bj [t]| ≥ n − f
• If (pl ,wl , t) and (pk ,wk , t) are both in Bi [t], then pl 6= pk .
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Conclusion

Abraham, Amit and Dolev’s
(AAD) algorithm

Abraham, Amit and Dolev’s (AAD) algorithm aims to solve the
approximate scalar consensus problem in an asynchronous
system. It could be viewed as consisting of three components:

• AAD component #1: each process communicate its
state vector vi [t − 1] to other processes. AAD guarantees
that for each non-faulty process pi in round t obtains a set
Bi [t] containing at least n − f tuples of the form
(pj ,wj , t) such that the following properties hold:

• If pi , pj are non-faulty, then |Bi [t] ∩ Bj [t]| ≥ n − f
• If (pl ,wl , t) and (pk ,wk , t) are both in Bi [t], then pl 6= pk .
• If pk is non-faulty, and (pk ,wk , t) ∈ Bi [t], then

wk = vk [t − 1].
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Conclusion

Abraham, Amit and Dolev’s
(AAD) algorithm

• AAD component #1: each process communicate its
state vector vi [t − 1] to other processes. AAD guarantees
that for each non-faulty process pi in round t obtains a set
Bi [t] containing at least n − f tuples of the form
(pj ,wj , t).

• AAD component #2: Process pi , having obtained Bi [t],
computes its new state vi [t] as a function of the tuples in
Bi [t].
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Conclusion

Abraham, Amit and Dolev’s
(AAD) algorithm

• AAD component #1: each process communicate its
state vector vi [t − 1] to other processes. AAD guarantees
that for each non-faulty process pi in round t obtains a set
Bi [t] containing at least n − f tuples of the form
(pj ,wj , t)

• AAD component #2: Process pi , having obtained Bi [t],
computes its new state vi [t] as a function of the tuples in
Bi [t].

• AAD component #3: AAD also includes a
sub-algorithm that allows the non-faulty processes to
determine when to terminate their computation.



Byzantine
Vector

Consensus in
Complete
Graphs

Authors: Nitin
H. Vaidya,

Vijay K. Garg

Presented by:
Chaoqi Wang

Conclusion

Asynchronous Approximate BVC
algorithm (n ≥ (d + 2)f + 1)
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Conclusion

Asynchronous Approximate BVC
algorithm (n ≥ (d + 2)f + 1)
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Conclusion

Asynchronous Approximate BVC
algorithm (n ≥ (d + 2)f + 1)

Note: Φ(B) = {wk : (pk ,wk , t) ∈ B}
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Conclusion

Proof of the correctness

Without loss of generality, suppose that m processes,
p1, p2, ..., pm are non-faulty, where m ≥ n − f , and the
remaining n −m processes are faulty.

Definition 1: A point r is said to be valid if there exists a
representation of r as a convex combination of vk [t − 1],
1 ≤ k ≤ m. That is, there exists constants βk , such that
0 ≤ βk ≤ 1 and

∑
1≤k≤m βk = 1, and

r =
∑

1≤k≤m
βkvk [t − 1]

.
In general, there may exits multiple such convex combination
representations of a valid point r . Moreover, it’s obvious that
at least one of the weights in any such convex combination
must be ≥ 1

m ≥
1
n .
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Conclusion

Proof of the correctness

In the following, we will break the proof into three parts.
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Conclusion

Proof of the correctness

In the following, we will break the proof into several parts.

1 For any non-faulty process pi , consider any C ⊆ Bi [t],
such that |C | = n − f . Because n ≥ (d + 2)f + 1, and
thus |Φ(C )| = |C | = n − f ≥ (d + 1)f + 1, by Lemma 1,
Γ(Φ(C )) 6= ∅. Therefore, Zi will contain a point from
Γ(Φ(C )) for each C .
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Conclusion

Proof of the correctness

In the following, we will break the proof into several parts.

1 For any non-faulty process pi , consider any C ⊆ Bi [t],
such that |C | = n − f . Because n ≥ (d + 2)f + 1, and
thus |Φ(C )| = |C | = n − f ≥ (d + 1)f + 1, by Lemma 1,
Γ(Φ(C )) 6= ∅. Therefore, Zi will contain a point from
Γ(Φ(C )) for each C .
Because there are at most f faulty processes. Then there
exists at least one (n − 2f )-size subset of Φ(C ) must be a
subset of {v1[t − 1], v2[t − 1], ..., vm[t − 1]}. Therefore, all
points in Γ(Φ(C )) must be valid, and thus all the points in
Zi computed in Step 2 must be valid.
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Conclusion

Proof of the correctness

In the following, we will break the proof into several parts.

1 All the points in Zi computed in Step 2 must be valid.

2 Because |Bi [t] ∩ Bj [t] ≥ n − f . Therefore, there exists a
set Cij ⊆ Bi ∩ Bj such that |Cij | = n − f . Therefore, Zi

and Zj both contain one identical point from Γ(Φ(Cij)).
Suppose the point is zij , as shown in Part 1, zij must be
valid. Therefore, there must exists a non-faulty process,
say pg(i ,j ,t), such that the weight associated with
vg(i ,j ,t)[t − 1] in the convex combination for zij is

≥ 1
m ≥

1
n .



Byzantine
Vector

Consensus in
Complete
Graphs

Authors: Nitin
H. Vaidya,

Vijay K. Garg

Presented by:
Chaoqi Wang

Conclusion

Proof of the correctness

In the following, we will break the proof into several parts.

1 All the points in Zi computed in Step 2 must be valid.

2 Because |Bi [t] ∩ Bj [t] ≥ n − f . Therefore, there exists a
set Cij ⊆ Bi ∩ Bj such that |Cij | = n − f . Therefore, Zi

and Zj both contain one identical point from Γ(Φ(Cij)).
Suppose the point is zij , as shown in Part 1, zij must be
valid. Therefore, there must exists a non-faulty process,
say pg(i ,j ,t), such that the weight associated with
vg(i ,j ,t)[t − 1] in the convex combination for zij is

≥ 1
m ≥

1
n .

3 Because vi [t] is computed as the average of the points in

Zi , and |Zi | =
( |Bi |
n−f
)
≤
( n
n−f
)
. Therefore, the weight of

vg(i ,j ,t)[t − 1] in vi [t] is ≥ 1
n( n

n−f )
. Define

γ =
1

n
( n
n−f
)
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Conclusion

Proof of the correctness

Because we have proved that, at time step t, every zk in Zi is
valid, and zk can be treated as a convex combination of

non-faulty processes’ state vectors. Therefore, vi [t] =

∑
z∈Zi z
|Zi |

can also be represented as a convex combination of non-faulty
processes’ state vectors (i.e. {v1[t − 1], ..., vm[t − 1]}).
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Conclusion

Proof of the correctness

Because we have proved that, at time step t, every zk in Zi is
valid, and zk can be treated as a convex combination of

non-faulty processes’ state vectors. Therefore, vi [t] =

∑
z∈Zi z
|Zi |

can also be represented as a convex combination of non-faulty
processes’ state vectors (i.e. {v1[t − 1], ..., vm[t − 1]}).

Therefore, we can get that for any non-faulty process’s vi [t] is
a convex combination of {v1[0], v2[0], ..., vm[0]}, implying that
the proposed algorithm satisfies the validity condition for
approximate consensus. (note, vk [0] is the process pk ’s input
vector.)
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Conclusion

Proof of the correctness

Therefore, we can get that for any non-faulty process’s vi [t] is
a convex combination of {v1[0], v2[0], ..., vm[0]}, implying that
the proposed algorithm satisfies the validity condition for
approximate consensus. (note, vk [0] is the process pk ’s input
vector.)

Let vil [t] denote the l − th element of the vector of the state
vi [t] of process pi . Define Ωl [t] = max1≤k≤mvkl [t], the
maximum value of l-th element of the vector state of non-faulty
processes. Similiarily, µl [t] = min1≤k≤mvkl [t]. We have that:

Ωl [t]− µl [t] ≤ (1− γ)(Ωl [t − 1]− µl [t − 1])
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Conclusion

Proof of the correctness

Let vil [t] denote the l − th element of the vector of the state
vi [t] of process pi . Define Ωl [t] = max1≤k≤mvkl [t], the
maximum value of l-th element of the vector state of non-faulty
processes. Similiarily, µl [t] = min1≤k≤mvkl [t]. We have that:

Ωl [t]− µl [t] ≤ (1− γ)(Ωl [t − 1]− µl [t − 1])

Then we can repeat until (1− γ)t(Ωl [0]− µl [0]) < ε, thus we
can get

t > log1/(1−γ)
Ωl [0]− µl [0]

ε
.
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Conclusion

Proof of the correctness

Let vil [t] denote the l − th element of the vector of the state
vi [t] of process pi . Define Ωl [t] = max1≤k≤mvkl [t], the
maximum value of l-th element of the vector state of non-faulty
processes. Similiarily, µl [t] = min1≤k≤mvkl [t]. We have that:

Ωl [t]− µl [t] ≤ (1− γ)(Ωl [t − 1]− µl [t − 1])

Then we can repeat until (1− γ)t(Ωl [0]− µl [0]) < ε, thus we
can get

t > log1/(1−γ)
Ωl [0]− µl [0]

ε
.
Simply assume that U is the upper bound of the input value,
and v is the lower bound of the input value. We can eventually
get that for each non-faulty process, it will terminate after
1 + log1/(1−γ)

U−v
ε , and ε−agreement is ensured.
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Conclusion

Proof of the correctness

In conclusion, the proposed algorithm can terminate within
finite steps and the validity and the ε-agreement are both
satisfied. Therefore, n ≥ (d + 2)f + 1 is sufficient for
approximate consensus in asynchronous systems.
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Conclusion

Conclusion

1 For a synchronous system, n ≥ max(3f + 1, (d + 1)f + 1)
is necessary and sufficient for achieving Byzantine vector
consensus.

2 For an asynchronous system, n ≥ (d + 2)f + 1 is necessary
and sufficient to achieve approximate BVC.
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Conclusion

QA

Thanks! QA?
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