

Posterior Sampling Model-based Policy Optimization Under Approximate Inference

Chaoqi Wang 1,2 , Yuxin Chen 2 , Kevin Murphy 1

 1 Google Research, Brain Team; 2 University of Chicago

Background

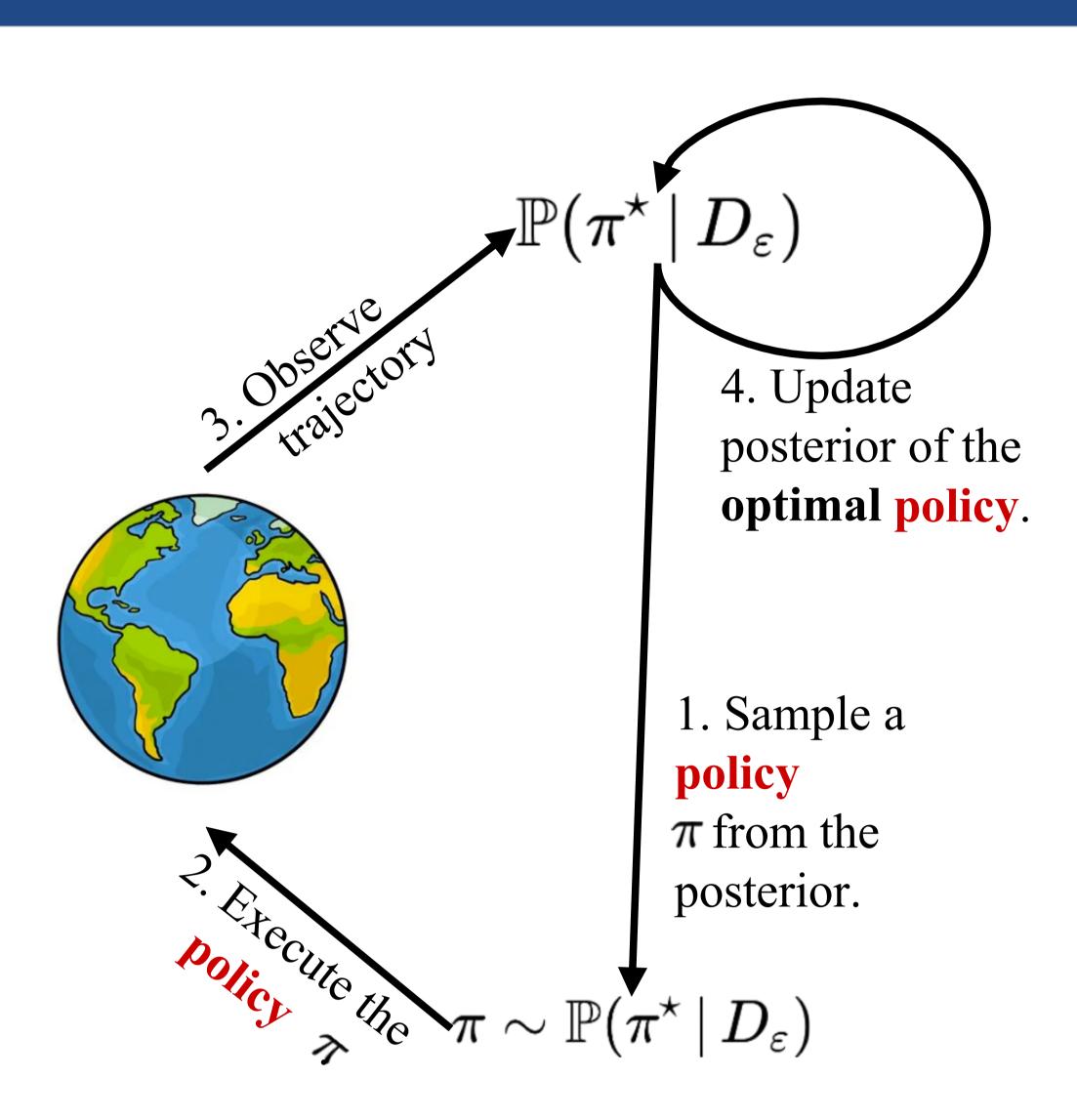


Figure: The pipeline of posterior sampling reinforcement learning (PSRL).

$$p(\pi|\mathcal{D}_{\mathcal{E}}) = \int \delta(\pi|\mathcal{M}) \qquad \underbrace{p(\mathcal{M}|\mathcal{D}_{\mathcal{E}})}_{\text{MDD}} d\mathcal{M}, \tag{1}$$

where $\delta(\pi|\mathcal{M})$ is the Dirac delta distribution, and $\delta(\pi|\mathcal{M}) = 1$ if and only if the policy π optimally solves the MDP \mathcal{M} .

- ▶ PSRL attains a regret of \sqrt{K} for K episodes.
- More *computationally efficient* than optimism-based methods and information-directed sampling.

But, the theoretical guarantee only holds under exact inference!

Research Question:

- ► What's the regret bound under approximate inference?
- ▶ What would be a good choice for approximating $p(\pi | \mathcal{D}_{\mathcal{E}})$?

Bayesian Regret under Approximate Inference

Theorem

For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm \mathcal{A} with any approximate posterior distribution q_k at episode k is upper bounded by

$$\sqrt{CK(HR_{\max})^2 \mathbb{H}(\pi^*)} + 2HR_{\max} \sum_{k=1}^K \sqrt{\mathbb{E}\left[\mathbf{d}_{KL}(q_k(\pi)|p_k(\pi))\right]},$$

where $\mathbb{H}(\pi^*)$ is the entropy of the prior distribution of polices, i.e., $p(\pi) = \int \delta(\pi|\mathcal{M})p(\mathcal{M})d\mathcal{M}$, and C is some problem-dependent constant.

Issues with Existing Solutions

Q: What would be a good choice for approximating $p(\pi | \mathcal{D}_{\mathcal{E}})$?

$$q^{\delta}(\pi|\mathcal{M}) = \int \delta(\pi|\mathcal{M})q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})d\mathcal{M}.$$

 $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ is usually implemented with deep ensemble or Bayesian neural networks. However, $q^{\delta}(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ can perform arbitrarily poorly in terms of the KL divergence!

EXAMPLE 1. SUBOPTIMALITY OF $q^{\delta}(\pi | \mathcal{M})$.

Consider a toy setting, where the support set of MDPs is $\{\mathcal{M}_1, \mathcal{M}_2\}$, and the support set of policies is $\{\pi_1, \pi_2\}$. Suppose that the true posterior distribution of MDPs is $p(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}}) = 1/3$, $p(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}}) = 2/3$, and the optimal policy per MDP is $\delta(\pi_1|\mathcal{M}_1) = 1$ and $\delta(\pi_2|\mathcal{M}_2) = 1$. This we get the following exact distribution over policies: $p(\pi|\mathcal{D}_{\mathcal{E}})$ is

$$p(\pi|\mathcal{D}_{\mathcal{E}}) = \underbrace{\begin{bmatrix} \delta(\pi_1|\mathcal{M}_1) = 1, \ \delta(\pi_1|\mathcal{M}_2) = 0 \\ \delta(\pi_2|\mathcal{M}_1) = 0, \ \delta(\pi_2|\mathcal{M}_2) = 1 \end{bmatrix}}_{\delta(\pi|\mathcal{M})} \underbrace{\begin{bmatrix} p(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}_{p(\mathcal{M}|\mathcal{D}_{\mathcal{E}})} = \begin{bmatrix} p(\pi_1|\mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\pi_2|\mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}$$

Now suppose we use the approximate posterior distribution over models, $q(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}})=0$ and $q(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}})=1$. We can optimize $q(\pi|\mathcal{M})$ by minimizing $d_{\mathrm{KL}}(q(\pi|\mathcal{D}_{\mathcal{E}})|p(\pi|\mathcal{D}_{\mathcal{E}}))$. One solution could be

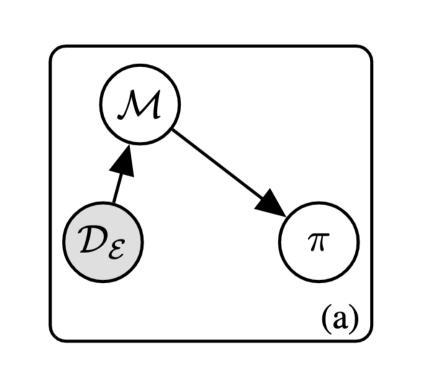
$$q(\pi|\mathcal{D}_{\mathcal{E}}) = \underbrace{\begin{bmatrix} q(\pi_1|\mathcal{M}_1) = \frac{1}{2}, & q(\pi_1|\mathcal{M}_2) = \frac{2}{3} \\ q(\pi_2|\mathcal{M}_1) = \frac{1}{2}, & q(\pi_2|\mathcal{M}_2) = \frac{1}{3} \end{bmatrix}}_{q(\pi|\mathcal{M})} \underbrace{\begin{bmatrix} q(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}}) = 0 \\ q(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}}) = 1 \end{bmatrix}}_{q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})} = \begin{bmatrix} q(\pi_1|\mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ q(\pi_2|\mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}$$

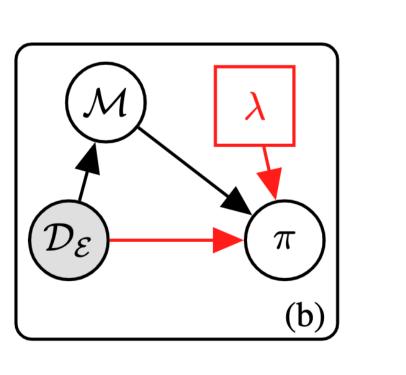
We see that the optimal $q(\pi|\mathcal{M})$ requires modeling uncertainty in the policy even conditional on the model. By contrast, if we adopt $q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})$ as our approximation, we will have

$$\mathbf{d}_{\mathrm{KL}}\left(q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})\middle|p(\pi|\mathcal{D}_{\mathcal{E}})\right) = \log 3 = \max_{q \in \Delta^{1}} \mathbf{d}_{\mathrm{KL}}\left(q(\pi|\mathcal{D}_{\mathcal{E}})\middle|p(\pi|\mathcal{D}_{\mathcal{E}})\right).$$

Observation: Approximation error of $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ ruins $q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})$.

A Better Choice of $q(\pi|\mathcal{D}_{\mathcal{E}})$





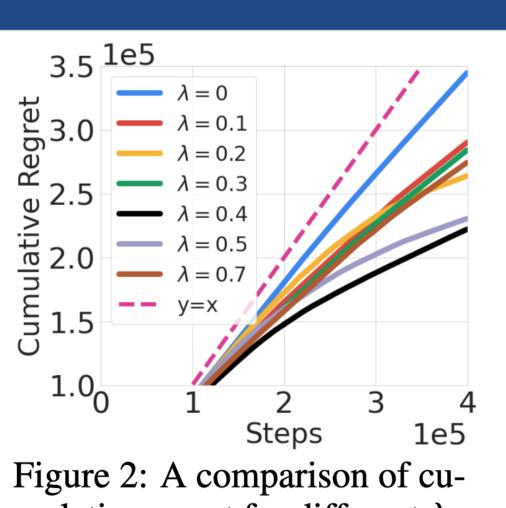


Figure 1: Graphical models for (a) the standard and (b) our posterior over policies π . Differences are shown in red.

mulative regret for different λ .

A more flexible posterior decomposition to handle the error:

$$q(\pi|\mathcal{D}_{\mathcal{E}}, \lambda) = \int q(\pi|\mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda) q(\mathcal{M}|\mathcal{D}_{\mathcal{E}}) d\mathcal{M},$$

where $\lambda \in [0, 1]$. In particular, we define

$$q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 0) = q(\pi | \mathcal{M}) = \delta(\pi | \mathcal{M})$$
$$q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 1) = q(\pi | \mathcal{D}_{\mathcal{E}})$$

Sampling Policies

Ensemble Sampling (PS). Given the posterior distributions, it remains to specify the sampling approach for policies. The simplest sampling strategy is uniform sampling,

$$\pi \sim \mathcal{U}(\{\pi_{1,1},...,\pi_{N,M}\}).$$

Optimistic Ensemble Sampling (OPS). PS may overly explore unpromising regions, hence we propose OPS, which gradually discards unpromising ensemble members.

$$p_k(\pi = \pi_i) := \frac{\exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_i, l) / \tau\right)}{\sum_{j=1}^{N \cdot M} \exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_j, l) / \tau\right)},$$

where τ controls the level of optimism, and $R_{\mathcal{E}}(\pi_i, l)$ is the empirical cumulative reward of π_i at the l_{th} episode.

Practical Algorithm: (0)PS-MBPO

Require: Initialize an ensemble of dynamics models $\Theta = \{\hat{\theta}_n\}_{n=1}^N$ i.i.d. $\sim q(\theta)$.

Require: Initialize an ensemble of policy networks $\Phi = \{\hat{\phi}_{n,m}\}_{n,m=1}^{N,M} \text{ i.i.d. } \sim q(\phi).$

Require: Initialize empty datasets $\mathcal{D}_{\mathcal{E}}$ and $\{\mathcal{D}_{\mathcal{M}}^{n,m}\}_{n,m=1}^{N,M}$. Real data vs. synthetic data ratio λ .

for K episodes do

> /* Dynamics training. (Line 2) */

- Train the ensemble models Θ on $\mathcal{D}_{\mathcal{E}}$ using MLE. \triangleright /* Policy sampling. (Line 3) */
- Sample a policy π from Φ uniformly at random or based on the optimistic distribution .

Sample state s_1 from the initial state distribution $\rho(s)$

for h=2:H steps do

ho /* Data collection. (Lines 6-11) */ s_h = rollout(world dynamics \mathcal{E} , π , s_{h-1} , #steps 1)

 $\mathsf{Add}\,\mathbf{s}_h\,\mathsf{to}\,\mathcal{D}_\mathcal{E}$

Sample state $\mathbf{s} \sim \mathcal{D}_{\mathcal{E}}$

for each model n, policy m do $\mathcal{D}_{\mathcal{M}}^{n,m}$ = rollout(dynamics $\hat{\boldsymbol{\theta}}_n$, policy $\hat{\boldsymbol{\phi}}_{n,m}$, s, R)

Created mixed dataset $D = \lambda \mathcal{D}_{\mathcal{E}} + (1 - \lambda) \mathcal{D}_{\mathcal{M}}^{n,m}$ > /* Policy optimization (Line 12) */

 $\hat{\boldsymbol{\phi}}_{n,m} = \text{update-policy}(\hat{\boldsymbol{\phi}}_{n,m}, D, \text{\#steps } G)$ $: \quad \text{end for}$

14: end for

5: Update the optimistic policy distribution.

16: **end for**

Experimental Results

1. Results on Continuous Control Benchmarks

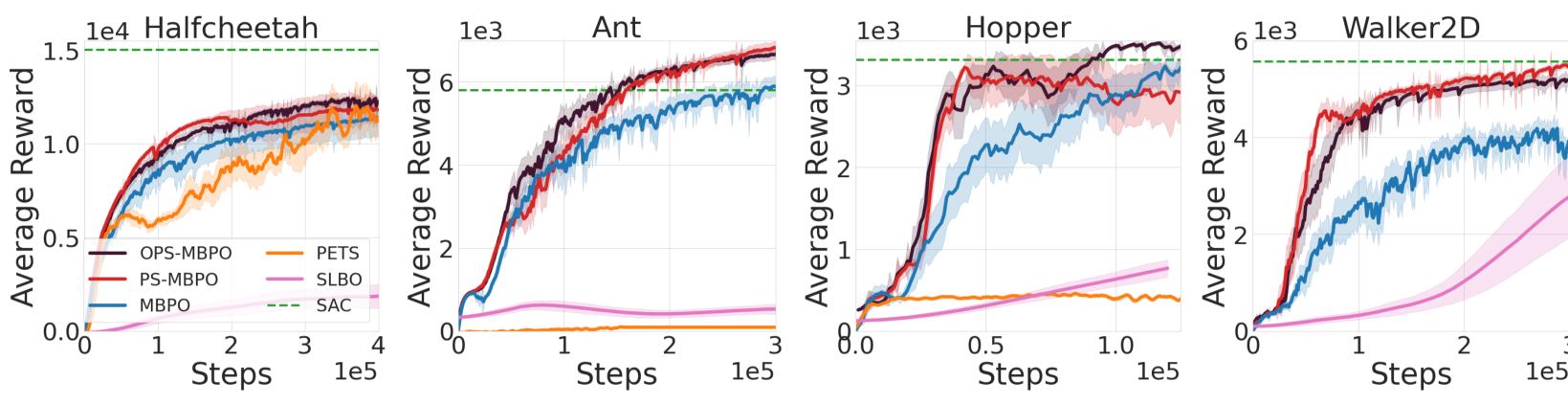


Figure: Comparisons on four tasks with dense rewards.

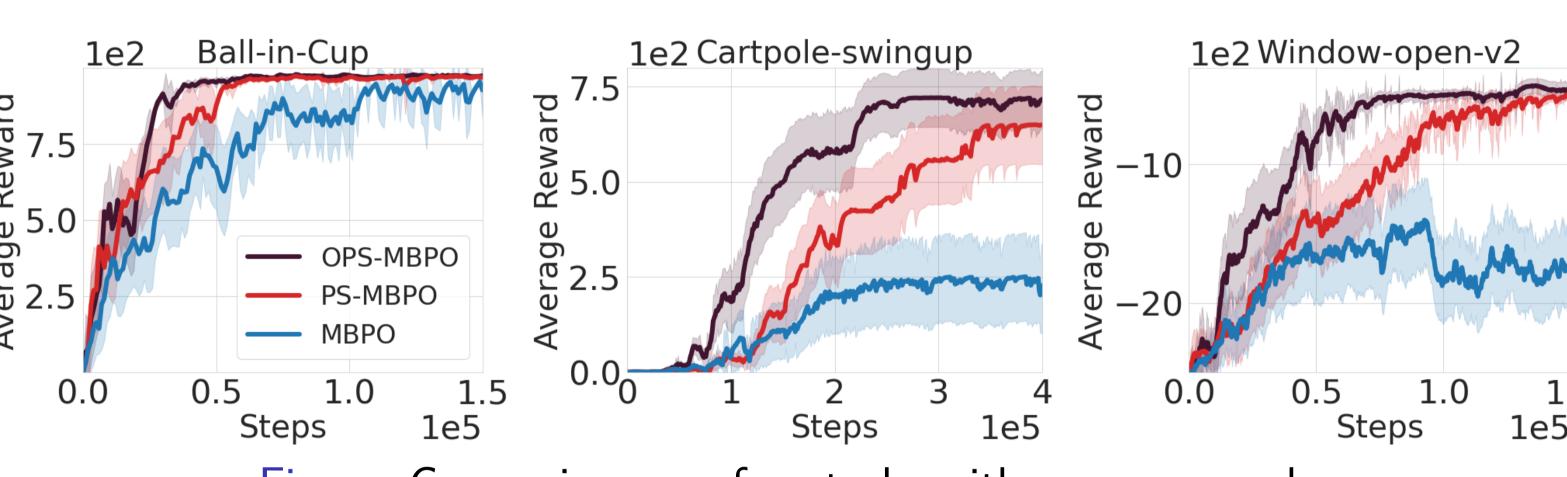


Figure: Comparisons on four tasks with sparse rewards.

2. Ablation Studies

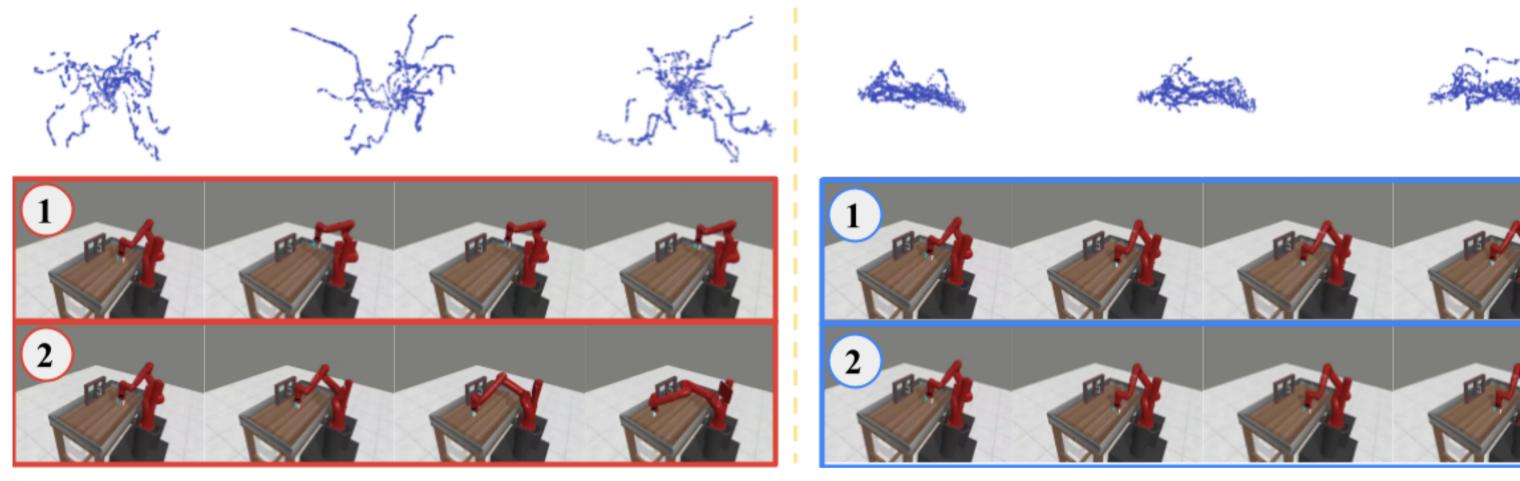


Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO (top right) on Window-open-v2.

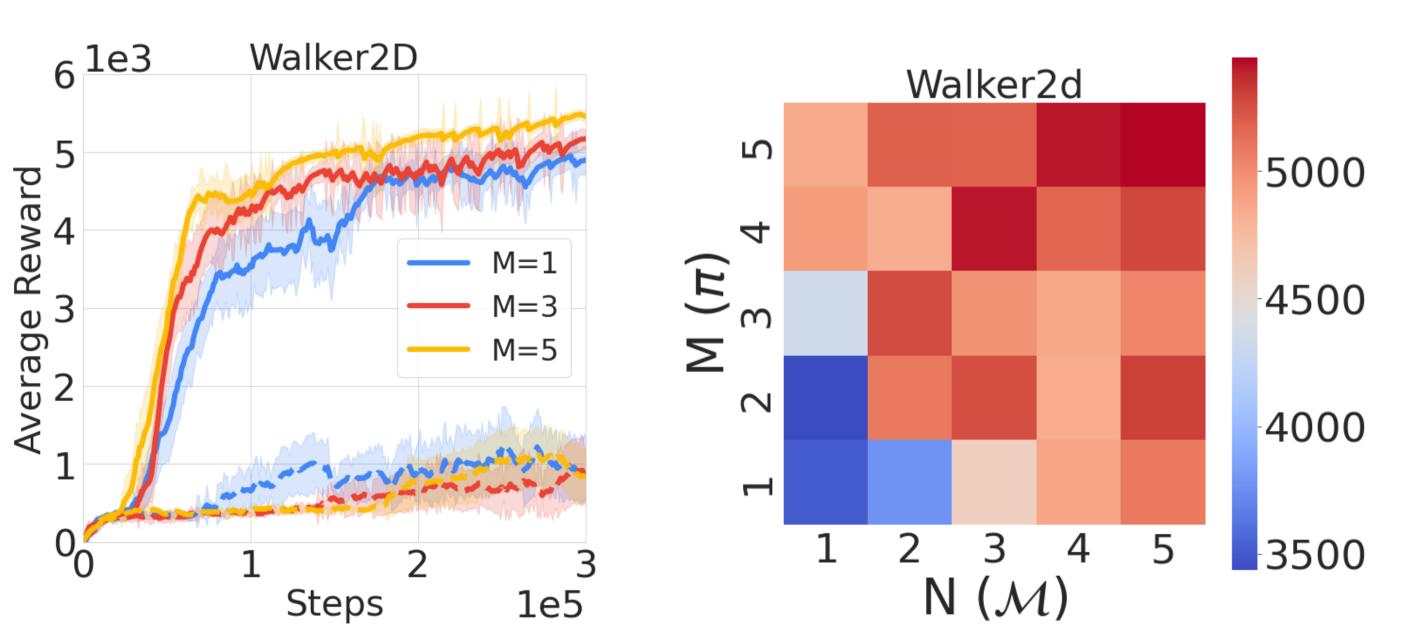


Figure: Left: Ablation study on the performance of with (solid curves) and without (dashed curves) the sampling step. Right: Average reward for varying number of dynamics model (N) and policies (M).

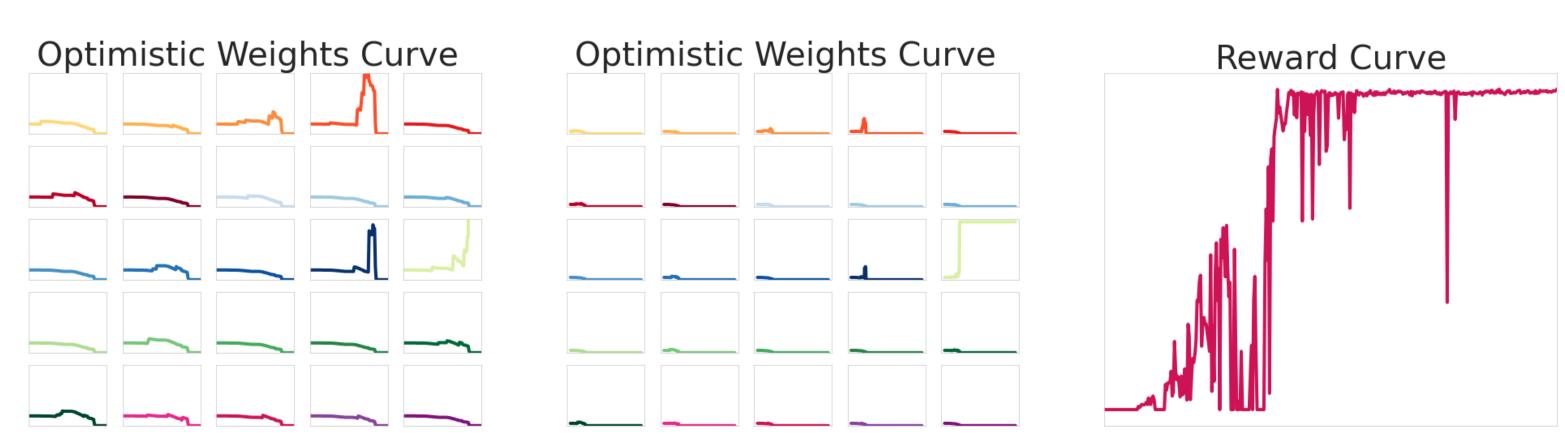


Figure: The optimistic weights of the first 100K iterations (left) and during the entire training process (middle), and the reward curve (right) on Cartpole-Swingup.