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Figure: The pipeline of posterior sampling reinforcement learning (PSRL).
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where §(7| M) is the Dirac delta distribution, and (7| M) = 1 if
and only if the policy 7 optimally solves the MDP M.
» PSRL attains a regret of v/ K for K episodes.

» More computationally efficient than optimism-based
methods and information-directed sampling.

But, the theoretical guarantee only holds under exact inference!
Research Question:

» What's the regret bound under approximate inference?
» What would be a good choice for approximating p(m|Dg)?

Bayesian Regret under Approximate Inference

For KK episodes, the Bayesian regret of posterior sampling
reinforcement learning algorithm A with any approximate posterior
distribution q;. at episode k is upper bounded by
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where H(7*) is the entropy of the prior distribution of polices, i.e.,
p(m) = [ §(m|M)p(M)dM, and C' is some problem-dependent

constant.

Issues with Existing Solutions

Q: What would be a good choice for approximating p(7|D¢)?
Pl = [ S(MpgMIDedM

q(M|Dg) is usually implemented with deep ensemble or

Bayesian neural networks. However, ¢°(M|Dg¢) can perform ar-

bitrarily poorly in terms of the KL divergence!

EXAMPLE 1. SUBOPTIMALITY OF ¢’ (7| M).

Consider a toy setting, where the support set of MDPs is
{ M1, M5}, and the support set of policies is {7, m,}. Suppose
that the true posterior distribution of MDPs is p(M;|Dg) =
1/3, p(Ms|Dg) = 2/3, and the optimal policy per MDP is
6(m|My) = 1 and §(m|Msy) = 1. This we get the following
exact distribution over policies: p(7|Dg¢) is
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Now suppose we use the approximate posterior distribution
over models, ¢(M;|Dg) = 0 and g(Ms|Dg) = 1. We can opti-
mize ¢(7| M) by minimizing dgg (¢(7|Dg)| p(7|Dg)). One solu-
tion could be
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We see that the optimal ¢(7| M) requires modeling uncertainty
in the policy even conditional on the model. By contrast, if we
adopt ¢°(7|Dg) as our approximation, we will have

dkr (¢ (7| De)| p(7|De)) = log3 = max dxr. (q(m|De)| p(m| D)) -
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Observation: Approximation error of (M |Dg) ruins ¢°(7|Dg).

A Better Choice of ¢(7|Dg¢)
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Figure 2: A comparison of cu-
mulative regret for different .

Figure 1: Graphical models for (a) the standard and (b) our
posterior over policies 7. Differences are shown in red.

A more flexible posterior decomposition to handle the error:
d(x{De. ) = [ a(x M. De. \g(MIDe)dM.

where A\ € |0, 1]. In particular, we define

q(mt|M,De, A =0) = g(7| M) = 6(w| M)
q(m|M, Dg, A = 1) = q(7|D¢)

Sampling Policies

Ensemble Sampling (PS). Given the posterior distributions, it
remains to specity the sampling approach for policies. The sim-
plest sampling strategy is uniform sampling,
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Optimistic Ensemble Sampling (OPS). PS may overly explore

unpromising regions, hence we propose OPS, which gradually
discards unpromising ensemble members.
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where 7 controls the level of optimism, and R¢(m;, 1) is the em-
pirical cumulative reward of 7; at the [y, episode.

Practical Algorithm: (O)PS-MBPO

Require: Initialize an ensemble of dynamics models © = {6,} V|
i.i.d. ~ q(8).
Require: Initialize an ensemble of policy networks ¢ =
{anm}grgg iid. ~ q(¢).
Require: Initialize empty datasets Dg and {D};"}.:.,. Real data
vs. synthetic data ratio .
1. for K episodes do

>
2: Train the ensemble models © on D¢ using MLE.
>
3: Sample a policy 7 from ¢ uniformly at random or based
on the optimistic distribution .
4; Sample state s; from the initial state distribution p(s)
5: for h =2 : H steps do
>
6: s, = rollout(world dynamics &, 7, s;,—1, #steps 1)
7 Add Sy, to Dg
8: Sample state s ~ D¢
9: for each model n, policy m do
10: D'," = rollout(dynamics 0, policy qAbn,m, s, R)
11: Created mixed dataset D = \Dg¢ + (1 — \)D'y,"
>
12: qbnm = update—policy(qun,m, D, #steps G)
13: end for
14: end for

15: Update the optimistic policy distribution.
16: end for

1. Results on Continuous Control Benchmarks
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Figure: Comparisons on four tasks with dense rewards.
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Figure: Comparisons on four tasks with sparse rewards.

2. Ablation Studies
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Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO
(top right) on Window-open-v2.
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Figure: Left: Ablation study on the performance of with (solid curves) and without

(dashed curves) the sampling step. Right: Average reward for varying number of
dynamics model (V) and policies (M).
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Figure: The optimistic weights of the first 100K iterations (left) and during the entire
training process (middle), and the reward curve (right) on Cartpole-Swingup.



