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Figure: The pipeline of posterior sampling reinforcement learning (PSRL).

p(π|DE) =

∫
δ(π|M) p(M|DE)︸ ︷︷ ︸

posterior over MDPs

dM, (1)

where δ(π|M) is the Dirac delta distribution, and δ(π|M) = 1 if
and only if the policy π optimally solves the MDP M.
▶ PSRL attains a regret of

√
K for K episodes.

▶ More computationally efficient than optimism-based
methods and information-directed sampling.

But, the theoretical guarantee only holds under exact inference!
Research Question:
▶ What’s the regret bound under approximate inference?
▶ What would be a good choice for approximating p(π|DE)?

Bayesian Regret under Approximate Inference

Theorem

For K episodes, the Bayesian regret of posterior sampling
reinforcement learning algorithm A with any approximate posterior
distribution qk at episode k is upper bounded by√

CK(HRmax)2H (π⋆) + 2HRmax

K∑
k=1

√
E
[
dKL (qk(π)| pk(π))

]
,

where H(π⋆) is the entropy of the prior distribution of polices, i.e.,
p(π) =

∫
δ(π|M)p(M)dM, and C is some problem-dependent

constant.

Issues with Existing Solutions

Q: What would be a good choice for approximating p(π|DE)?

qδ(π|DE) =

∫
δ(π|M)q(M|DE)dM.

q(M|DE) is usually implemented with deep ensemble or
Bayesian neural networks. However, qδ(M|DE) can perform ar-
bitrarily poorly in terms of the KL divergence!

EXAMPLE 1. SUBOPTIMALITY OF qδ(π|DE).
Consider a toy setting, where the support set of MDPs is
{M1,M2}, and the support set of policies is {π1, π2}. Suppose
that the true posterior distribution of MDPs is p(M1|DE) =
1/3, p(M2|DE) = 2/3, and the optimal policy per MDP is
δ(π1|M1) = 1 and δ(π2|M2) = 1. This we get the following
exact distribution over policies: p(π|DE) is

p(π|DE) =
[
δ(π1|M1)=1, δ(π1|M2)=0
δ(π2|M1)=0, δ(π2|M2)=1

]
︸ ︷︷ ︸

δ(π|M)

[
p(M1|DE)=

2
3

p(M2|DE)=
1
3

]
︸ ︷︷ ︸

p(M|DE)

=
[
p(π1|DE)=

2
3

p(π2|DE)=
1
3

]
Now suppose we use the approximate posterior distribution

over models, q(M1|DE) = 0 and q(M2|DE) = 1. We can opti-
mize q(π|M) by minimizing dKL (q(π|DE)| p(π|DE)). One solu-
tion could be

q(π|DE) =
[
q(π1|M1)=

1
2, q(π1|M2)=

2
3

q(π2|M1)=
1
2, q(π2|M2)=

1
3

]
︸ ︷︷ ︸

q(π|M)

[
q(M1|DE)=0
q(M2|DE)=1

]
︸ ︷︷ ︸

q(M|DE)

=
[
q(π1|DE)=

2
3

q(π2|DE)=
1
3

]
We see that the optimal q(π|M) requires modeling uncertainty
in the policy even conditional on the model. By contrast, if we
adopt qδ(π|DE) as our approximation, we will have
dKL

(
qδ(π|DE)

∣∣ p(π|DE)
)
= log 3 = max

q∈∆1
dKL (q(π|DE)| p(π|DE)) .

Observation: Approximation error of q(M|DE) ruins qδ(π|DE).

A Better Choice of q(π|DE)

A more flexible posterior decomposition to handle the error:

q(π|DE, λ) =

∫
q(π|M,DE, λ)q(M|DE)dM,

where λ ∈ [0, 1]. In particular, we define
q(π|M,DE, λ = 0) = q(π|M) = δ(π|M)

q(π|M,DE, λ = 1) = q(π|DE)

Sampling Policies

Ensemble Sampling (PS). Given the posterior distributions, it
remains to specify the sampling approach for policies. The sim-
plest sampling strategy is uniform sampling,

π ∼ U({π1,1, ..., πN,M}).
Optimistic Ensemble Sampling (OPS). PS may overly explore
unpromising regions, hence we propose OPS, which gradually
discards unpromising ensemble members.

pk(π = πi) :=
exp

(∑k
l=1RE(πi, l)/τ

)
∑N ·M

j=1 exp
(∑k

l=1RE(πj, l)/τ
),

where τ controls the level of optimism, and RE(πi, l) is the em-
pirical cumulative reward of πi at the lth episode.

Practical Algorithm: (O)PS-MBPO

Require: Initialize an ensemble of dynamics models Θ = {θ̂n}Nn=1
i.i.d. ∼ q(θ).

Require: Initialize an ensemble of policy networks Φ =

{ϕ̂n,m}N,M
n,m=1 i.i.d. ∼ q(ϕ).

Require: Initialize empty datasets DE and {Dn,m
M }N,M

n,m=1. Real data
vs. synthetic data ratio λ.

1: for K episodes do
▷ /* Dynamics training. (Line 2) */

2: Train the ensemble models Θ on DE using MLE.
▷ /* Policy sampling. (Line 3) */

3: Sample a policy π from Φ uniformly at random or based
on the optimistic distribution .

4: Sample state s1 from the initial state distribution ρ(s)
5: for h = 2 : H steps do

▷ /* Data collection. (Lines 6-11) */
6: sh = rollout(world dynamics E , π, sh−1, #steps 1)
7: Add sh to DE
8: Sample state s ∼ DE
9: for each model n, policy m do

10: Dn,m
M = rollout(dynamics θ̂n, policy ϕ̂n,m, s, R)

11: Created mixed dataset D = λDE + (1− λ)Dn,m
M

▷ /* Policy optimization (Line 12) */
12: ϕ̂n,m = update-policy(ϕ̂n,m, D, #steps G)
13: end for
14: end for
15: Update the optimistic policy distribution.
16: end for

Experimental Results

1. Results on Continuous Control Benchmarks

Figure: Comparisons on four tasks with dense rewards.

Figure: Comparisons on four tasks with sparse rewards.

2. Ablation Studies

Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO
(top right) on Window-open-v2.

Figure: Left: Ablation study on the performance of with (solid curves) and without
(dashed curves) the sampling step. Right: Average reward for varying number of
dynamics model (N) and policies (M).

Figure: The optimistic weights of the first 100K iterations (left) and during the entire
training process (middle), and the reward curve (right) on Cartpole-Swingup.


