

Model-based Policy Optimization under Approximate Bayesian Inference Chaoqi Wang 1 , Yuxin Chen 1 , Kevin Murphy 2 ¹University of Chicago; ²Google DeepMind

Background

Figure: The pipeline of posterior sampling reinforcement learning (PSRL).

- \blacktriangleright PSRL attains a regret of \sqrt{K} for K episodes.
- ▶ More *computationally efficient* than optimism-based methods and information-directed sampling.

- ▶ What's the regret bound under approximate inference?
- \blacktriangleright What would be a good choice for approximating $p(\pi|\mathcal{D}_{\mathcal{E}})$?

Bayesian Regret under Approximate Inference

$$
p(\pi | \mathcal{D}_{\mathcal{E}}) = \int \delta(\pi | \mathcal{M}) \underbrace{p(\mathcal{M} | \mathcal{D}_{\mathcal{E}})}_{\text{posterior over MDPs}} d\mathcal{M}, \tag{1}
$$

where $\delta(\pi|M)$ is the Dirac delta distribution, and $\delta(\pi|M) = 1$ if and only if the policy π optimally solves the MDP \mathcal{M} .

where $\mathbb{H}(\pi^\star)$ is the entropy of the prior distribution of polices, i.e., $p(\pi) = \int \delta(\pi |{\cal M})p({\cal M})d{\cal M}$, and C is some problem-dependent constant.

But, the theoretical guarantee only holds under exact inference! **Research Question:**

 $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ is usually implemented with deep ensemble or Bayesian neural networks. However, $q^\delta(\mathcal{M}|\mathcal{D}_\mathcal{E})$ can perform arbitrarily poorly in terms of the KL divergence!

EXAMPLE 1. SUBOPTIMALITY OF $q^\delta(\pi | {\cal D}_{{\cal E}})$.

Consider a toy setting, where the support set of MDPs is $\{M_1,M_2\}$, and the support set of policies is $\{\pi_1,\pi_2\}$. Suppose that the true posterior distribution of MDPs is $p(\mathcal{M}_1|\bar{\mathcal{D}}_{\mathcal{E}}) =$ 1/3, $p(M_2|\mathcal{D}_{\mathcal{E}}) = 2/3$, and the optimal policy per MDP is $\delta(\pi_1|\mathcal{M}_1) = 1$ and $\delta(\pi_2|\mathcal{M}_2) = 1$. This we get the following exact distribution over policies: $p(\pi|\mathcal{D}_{\mathcal{E}})$ is

Theorem

For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm A with any approximate posterior distribution q_k at episode k is upper bounded by

$$
\sqrt{CK(HR_{\max})^2\mathbb{H}\left(\pi^{\star}\right)}+2HR_{\max}\sum_{k=1}^K\sqrt{\mathbb{E}\left[\mathbf{d}_{\mathsf{KL}}\left(q_k(\pi)\right)p_k(\pi)\right]},
$$

Now suppose we use the approximate posterior distribution over models, $q(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}}) = 0$ and $q(\mathcal{M}_2|\bar{\mathcal{D}}_{\mathcal{E}}) = 1$. We can optimize $q(\pi|M)$ by minimizing $d_{KL}(q(\pi|\mathcal{D}_{\mathcal{E}})| p(\pi|\mathcal{D}_{\mathcal{E}}))$. One solution could be

 $q(\pi | \mathcal{D}_{\mathcal{E}}) =$ $\int q(\pi_1|\mathcal{M}_1)=\frac{1}{2}$ $\frac{1}{2}$, $q(\pi_1|\mathcal{M}_2) = \frac{2}{3}$ 3 $q(\pi_2|\mathcal{M}_1){=}\frac{\overline{1}}{2}$ $\frac{1}{2}$, $q(\pi_2|\mathcal{M}_2) = \frac{1}{3}$ 3 $\int q(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}})=0$ $q(\pi | \mathcal{M})$ $q(\pi|\mathcal{M})$ $q(\mathcal{M}_2|\mathcal{D}_\mathcal{E}){=}1$ $\overline{}$ $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ = $\int q(\pi_1|\mathcal{D}_{\mathcal{E}})=\frac{2}{3}$ 3 $q(\pi_2|\mathcal{D}_{\mathcal{E}}){=}\frac{1}{3}$ 3 $\overline{}$

We see that the optimal $q(\pi|\mathcal{M})$ requires modeling uncertainty | \vert in the policy even conditional on the model. By contrast, if we \vert adopt $q^\delta(\pi | {\cal D}_{{\cal E}})$ as our approximation, we will have

Issues with Existing Solutions

Q: What would be a good choice for approximating $p(\pi|\mathcal{D}_{\mathcal{E}})$?

$$
q^{\delta}(\pi | \mathcal{D}_{\mathcal{E}}) = \int \delta(\pi | \mathcal{M}) q(\mathcal{M} | \mathcal{D}_{\mathcal{E}}) d\mathcal{M}.
$$

$$
p(\pi | \mathcal{D}_{\mathcal{E}}) = \underbrace{\begin{bmatrix} \delta(\pi_1 | \mathcal{M}_1) = 1, \ \delta(\pi_1 | \mathcal{M}_2) = 0 \\ \delta(\pi_2 | \mathcal{M}_1) = 0, \ \delta(\pi_2 | \mathcal{M}_2) = 1 \end{bmatrix}}_{\delta(\pi | \mathcal{M})} \underbrace{\begin{bmatrix} p(\mathcal{M}_1 | \mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\mathcal{M}_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}_{p(\mathcal{M} | \mathcal{D}_{\mathcal{E}})} = \begin{bmatrix} p(\pi_1 | \mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\pi_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}
$$

Figure: Left: Ablation study on the performance of with (solid curves) and without (dashed curves) the sampling step. Right: Average reward for varying number of dynamics model (N) and policies (M) .

$$
\mathbf{d}_{\mathrm{KL}}\left(q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})\big|p(\pi|\mathcal{D}_{\mathcal{E}})\right) = \log 3 = \max_{q \in \Delta^1} \mathbf{d}_{\mathrm{KL}}\left(q(\pi|\mathcal{D}_{\mathcal{E}})\big|p(\pi|\mathcal{D}_{\mathcal{E}})\right).
$$

Observation: Approximation error of $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ ruins $q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})$.

| A Better Choice of $q(\pi|\mathcal{D}_{\mathcal{E}})$

Figure 1: Graphical models for (a) the standard and (b) our posterior over policies π . Differences are shown in red.

Figure 2: A comparison of cumulative regret for different λ .

A more flexible posterior decomposition to handle the error:

 $q(\pi|\mathcal{D}_{\mathcal{E}},\lambda)=% {\textstyle\sum\nolimits_{\alpha}} q_{\alpha}^{\dag}\left(\pi|\mathcal{D}_{\alpha}|\mathcal{D}_{\alpha}\right)$ Z $q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda) q(\mathcal{M} | \mathcal{D}_{\mathcal{E}}) d\mathcal{M},$ where $\lambda \in [0, 1]$. In particular, we define

 $q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 0) = q(\pi | \mathcal{M}) = \delta(\pi | \mathcal{M})$ $q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 1) = q(\pi | \mathcal{D}_{\mathcal{E}})$

Sampling Policies

Ensemble Sampling (PS). Given the posterior distributions, it remains to specify the sampling approach for policies. The simplest sampling strategy is uniform sampling,

 $\pi \sim \mathcal{U}(\{\pi_{1,1},...,\pi_{N,M}\}).$

Optimistic Ensemble Sampling (OPS). PS may overly explore unpromising regions, hence we propose OPS, which gradually discards unpromising ensemble members.

$$
p_k(\pi = \pi_i) \coloneqq \frac{\exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_i, l)/\tau\right)}{\sum_{j=1}^{N \cdot M} \exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_j, l)/\tau\right)},
$$

where τ controls the level of optimism, and $R_{\mathcal{E}}(\pi_i,l)$ is the empirical cumulative reward of π_i at the l_{th} episode.

Practical Algorithm: (O)PS-MBPO

Experimental Results

2. Ablation Studies

Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO (top right) on Window-open-v2.

Figure: The optimistic weights of the first 100K iterations (left) and during the entire training process (middle), and the reward curve (right) on Cartpole-Swingup.