O Google DeepMind Model-based Policy Optimization under Approximate Bayesian Inference R
Chaogi Wang?!, Yuxin Chen', Kevin Murphy?

'University of Chicago; “Google DeepMind

Background Issues with Existing Solutions Sampling Policies

Q: What would be a good choice for approximating p(7|D¢)? Ensemble Sampling (PS). Given the posterior distributions, it 1. Results on Continuous Control Benchmarks

. . . . . . Halfcheetah Ant H Walker2D
remains to specity the sampling approach for policies. The sim- R te3 " le3  Hopper gle3  Walker

0 _ IS Do IS
q'(mDe) = / o(m|M)q(M|De)d M. plest sampling strategy is uniform sampling, = : %3
q(M|D¢) is usually implemented V\?th deep ensemble or T~U{T1, TN ). %05 / %4 %2
. &~ '~ e— OPS-MBPO = PETS o 2 o 1
4. Update B.ayesolan neuralonetworks. Howevelj, q°(M|Dg) can perform ar- Optimistic Ensemble Sampling (OPS). PS may overly explore g Tewo s 3 g
posterior of the bitrarily poorly in terms of the KL divergence! unpromising regions, hence we propose OPS, which gradually %1 2 3 4 % 12 3 B0 o5 10 o
optlmal p Ollcy. . - Steps Steps Steps Steps
EXAMPLE 1. SUBOPTIMALITY OF ¢ (7| D). discards unpromising ensemble members. Figure: Comparisons on four tasks with dense rewards.
. . . k -in-Cu r -swingu iIndow- n-v
Consider a toy setting, where the support set of MDPs is EXp (2121 Re(mi 1)/ 7 ) e . I T 1e2 Wincowopeniva__
1. Sample a { M1, Ms}, and the support set of policies is {m, m2}. Suppose pr(m = m;) = NRY, . a S 7.5 S :
policy that the true posterior distribution of MDPs is p(M;|Dg) = D_j—1 €XP (2121 Re(mj, 1)/ T) <o i v
7 from the 1/3, p(My|Dg) = 2/3, and the optimal policy per MDP is where 7 controls the level of optimism, and R¢(7;, 1) is the em- S,  owro. £25
posterior. o(m|My) = 1 and d(m|Ms) = 1. This we get the following . . . E — MBPO E _
I L . irical cumulative reward of 7; at the [y, episode. . |
exact distribution over policies: p(7|Dg¢) is P 00 05 10 15 %% 1 2 3 4 00 05 10 15
- ]P)(ﬂ_* ‘ D ) S M1 8| Mo M, [De)2 1 [De)2 Steps le5 Steps leb Steps leb
£ p(m|Dg) = [5%{/\43;0: 5%{/\43;1} |:§(M;|Di);§i| = |:];<7T;|Di);§i| Figure: Comparisons on four tasks with sparse rewards.
TW Practical Algorithm: (O)PS-MBPO 5 Ablation Stud;
T e : ation Studies
Figure: The pipeline of posterior sampling reinforcement learning (PSRL). Now suppose we use the approximate posterior distribution o Tirs s , Ly .y ~ S~ 7
over models, ¢(M;|Dg) = 0 and ¢(Ma|Dg) = 1. We can opti- Req.u.lre. Initialize an ensemble of dynamics models © = {6,}", bendle RY e
p(m| D) = /5@‘/\4) p(M|Dg)  dM, (1) mize (7| M) by minimizing dgp (¢(7|Dg)| p(7|Dg)). One solu- 1-1:d- ~ Q(H) | i N
N tion could be Require: Initialize an ensemble of policy networks & =
posterior over MDPs _ [amIM)=L, q(mM)=2] [ qMyDe)=0] _ [ a(m|De)=2 7 NM 31d. ~
1 1 ' . " : q<7T|D8) | g(mMy)=; <7T2\/\/12)=i q(Ms|De)=1 | (Wz\Dg)Zi {¢n,m}n,m:1 1.1.d. C](Qb)
where 0 (77\/\/1) is thg Dirac c%lelta distribution, and (7| M) = 1 if [Q—Q’L_gum’p_l [q 3] Require: Initialize empty datasets Dg and {D"}"" . Real data
and only if the policy m optimally solves the MDP M. We see that the o tima(?l(ﬂ (7;| M) re 1i<ire|esg)mo deline uncertaint vs. synthetic data ratio A. 7 7 7/ 7
» PSRL attains a .regret Of. V.K for K ePISOdeS° in the polic ever]?condi’i]ional on tcflle model. B cgntrast T WZ 1. for K epiSOdeS do Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO
» More computationally efficient than optimism-based i tp ‘ % - ’ llifl / > (top right) on Window-open-v2.
methods and information-directed sampling. adop q5 (m|D¢) as our approximation, we will have 2: Train the ensemble models © on D¢ using MLE. sle3  Walker2D
But, the theoretical guarantee only holds under exact inference! dkw (¢ (7|De)| p(7|De)) = log3 = e dr (¢(7|De)| p(7|De)) - > Walker s I
Research Question: 3: Sample a policy 7 from ¢ uniformly at random or based D > 2000
» What's the reeret bound under approximate inference? Observation: Approximation error of q(M|Dg) ruins ¢°(7|Dsg). on the optimistic distribution . =4
5 PP P i 4500
» What would be a good choice for approximating p(m|Dg)? 4; Sample state s; from the initial state distribution p(s) %3
. , __ 9. .
A Better Choice of ¢(7|Dg¢) 5 forh=2: M steps do E Ad 4000
Bayesian Regret under Approximate Inference > ) B - g I
Ny 6: s;, = rollout(world dynamics &, 7, s;,_1, #steps 1) of . , 5 1 2 3 4 5 B3500
E} 7 Add St to Dg >teps te> N (M)
4 g q. Sample state s ~ D Figure: Left: Ablation stuc.ly on the p.erformance of with (solid cur\./es) and without
@ ° D¢ S | £ h del I; d (dashed curves) the sampling step. Right: Average reward for varying number of
For K episodes, the Bayesian regret of posterior sampling @ b) € i ot ;;Cm o lle " go ey g Lov d dynamics model (V) and policies (11).
reinforcement /earning a/gorithm A with any approximate posterior Steps le5 10 M- HO f)Ut( ynamlcs ﬁ, pO 1Cy ¢n,m/ > }n%,?n Optimistic Weights Curve Optimistic Weights Curve Reward Curve
distribution g at episode k Is upper bounded by Figure 1: Graphical models for (a) the standard and (b) our Figure 2: A comparison of cu- 11: Created mixed dataset D = )\Dg T <1 - )\)D_/\/l __JI
K posterior over policies 7. Differences are shown in red. mulative.regret for different \. S — . B
VOK (H Ry )?H (7%) + 2H Ry Z \/ v [dKL (qr(m)| pr(m ))] , A more flexible posterior decomposition to handle the error: 1o- ¢nm = update-policy( qgmm, D, #steps G) ~ — | | —
| e (71D \) = [ a(mlM, De g MID)IM, o endior C—— LI
where H(7*) is the entropy of the prior distribution of polices, i.e., here X € 10 11 1 . - 14: end for e
p(m) = f o(m|M)p(M)dM, and C' is some problem-dependent where A € {0, 1]. In particular, we define 15: Update the optimistic policy distribution. Figure: The optimistic weights of the first 100K iterations (left) and during the entire
constant. q(m|M,Dg, A = 0) = q(7| M) = o(m| M) 16: end for training process (middle), and the reward curve (right) on Cartpole-Swingup.

q(m|M,Dg, A = 1) = q(7|Dg)



