

Model-based Policy Optimization under Approximate Bayesian Inference Chaoqi Wang¹, Yuxin Chen¹, Kevin Murphy² ¹University of Chicago; ²Google DeepMind

Background

Figure: The pipeline of posterior sampling reinforcement learning (PSRL).

$$p(\pi | \mathcal{D}_{\mathcal{E}}) = \int \delta(\pi | \mathcal{M}) \underbrace{p(\mathcal{M} | \mathcal{D}_{\mathcal{E}})}_{\text{posterior over MDPs}} d\mathcal{M}, \quad (1)$$

where $\delta(\pi | \mathcal{M})$ is the Dirac delta distribution, and $\delta(\pi | \mathcal{M}) = 1$ if and only if the policy π optimally solves the MDP \mathcal{M} .

- PSRL attains a regret of \sqrt{K} for K episodes.
- More computationally efficient than optimism-based methods and information-directed sampling.

But, the theoretical guarantee only holds under exact inference! **Research Question:**

- What's the regret bound under approximate inference?
- What would be a good choice for approximating $p(\pi | \mathcal{D}_{\mathcal{E}})$?

Bayesian Regret under Approximate Inference

Theorem

For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm \mathcal{A} with any approximate posterior distribution q_k at episode k is upper bounded by

$$\sqrt{CK(HR_{\max})^{2}\mathbb{H}(\pi^{\star})} + 2HR_{\max}\sum_{k=1}^{K}\sqrt{\mathbb{E}\left[\mathbf{d}_{\mathsf{KL}}(q_{k}(\pi)|p_{k}(\pi))\right]},$$

where $\mathbb{H}(\pi^{\star})$ is the entropy of the prior distribution of polices, i.e., $p(\pi) = \int \delta(\pi | \mathcal{M}) p(\mathcal{M}) d\mathcal{M}$, and C is some problem-dependent constant.

Issues with Existing Solutions

Q: What would be a good choice for approximating $p(\pi | \mathcal{D}_{\mathcal{E}})$?

$$q^{\delta}(\pi | \mathcal{D}_{\mathcal{E}}) = \int \delta(\pi | \mathcal{M}) q(\mathcal{M} | \mathcal{D}_{\mathcal{E}}) d\mathcal{M}.$$

 $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ is usually implemented with deep ensemble or Bayesian neural networks. However, $q^{\delta}(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ can perform arbitrarily poorly in terms of the KL divergence!

EXAMPLE 1. SUBOPTIMALITY OF $q^{\delta}(\pi | \mathcal{D}_{\mathcal{E}})$.

Consider a toy setting, where the support set of MDPs is $\{\mathcal{M}_1, \mathcal{M}_2\}$, and the support set of policies is $\{\pi_1, \pi_2\}$. Suppose that the true posterior distribution of MDPs is $p(\mathcal{M}_1 | \hat{\mathcal{D}}_{\mathcal{E}}) =$ 1/3, $p(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}}) = 2/3$, and the optimal policy per MDP is $\delta(\pi_1|\mathcal{M}_1) = 1$ and $\delta(\pi_2|\mathcal{M}_2) = 1$. This we get the following exact distribution over policies: $p(\pi | \mathcal{D}_{\mathcal{E}})$ is

$$p(\pi | \mathcal{D}_{\mathcal{E}}) = \underbrace{\begin{bmatrix} \delta(\pi_1 | \mathcal{M}_1) = 1, \ \delta(\pi_1 | \mathcal{M}_2) = 0 \\ \delta(\pi_2 | \mathcal{M}_1) = 0, \ \delta(\pi_2 | \mathcal{M}_2) = 1 \end{bmatrix}}_{\delta(\pi | \mathcal{M})} \underbrace{\begin{bmatrix} p(\mathcal{M}_1 | \mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\mathcal{M}_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}_{p(\mathcal{M} | \mathcal{D}_{\mathcal{E}})} = \begin{bmatrix} p(\pi_1 | \mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ p(\pi_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}$$

Now suppose we use the approximate posterior distribution over models, $q(\mathcal{M}_1|\mathcal{D}_{\mathcal{E}}) = 0$ and $q(\mathcal{M}_2|\mathcal{D}_{\mathcal{E}}) = 1$. We can optimize $q(\pi | \mathcal{M})$ by minimizing $\mathbf{d}_{\mathrm{KL}}(q(\pi | \mathcal{D}_{\mathcal{E}}) | p(\pi | \mathcal{D}_{\mathcal{E}}))$. One solution could be

$$q(\pi | \mathcal{D}_{\mathcal{E}}) = \underbrace{\begin{bmatrix} q(\pi_1 | \mathcal{M}_1) = \frac{1}{2}, \ q(\pi_1 | \mathcal{M}_2) = \frac{2}{3} \\ q(\pi_2 | \mathcal{M}_1) = \frac{1}{2}, \ q(\pi_2 | \mathcal{M}_2) = \frac{1}{3} \end{bmatrix}}_{(\pi_2 | \mathcal{M}_2) = \frac{1}{3}} \underbrace{\begin{bmatrix} q(\mathcal{M}_1 | \mathcal{D}_{\mathcal{E}}) = 0 \\ q(\mathcal{M}_2 | \mathcal{D}_{\mathcal{E}}) = 1 \end{bmatrix}}_{(\pi_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3}} = \begin{bmatrix} q(\pi_1 | \mathcal{D}_{\mathcal{E}}) = \frac{2}{3} \\ q(\pi_2 | \mathcal{D}_{\mathcal{E}}) = \frac{1}{3} \end{bmatrix}}$$

We see that the optimal $q(\pi | \mathcal{M})$ requires modeling uncertainty in the policy even conditional on the model. By contrast, if we adopt $q^{\delta}(\pi | \mathcal{D}_{\mathcal{E}})$ as our approximation, we will have

$$\mathbf{d}_{\mathrm{KL}}\left(q^{\delta}(\pi | \mathcal{D}_{\mathcal{E}}) | p(\pi | \mathcal{D}_{\mathcal{E}})\right) = \log 3 = \max_{q \in \Delta^{1}} \mathbf{d}_{\mathrm{KL}}\left(q(\pi | \mathcal{D}_{\mathcal{E}}) | p(\pi | \mathcal{D}_{\mathcal{E}})\right).$$

Observation: Approximation error of $q(\mathcal{M}|\mathcal{D}_{\mathcal{E}})$ ruins $q^{\delta}(\pi|\mathcal{D}_{\mathcal{E}})$.

A Better Choice of $q(\pi | \mathcal{D}_{\mathcal{E}})$

Figure 1: Graphical models for (a) the standard and (b) our posterior over policies π . Differences are shown in red.

Figure 2: A comparison of cumulative regret for different λ .

A more flexible posterior decomposition to handle the error:

 $q(\pi | \mathcal{D}_{\mathcal{E}}, \lambda) = \int q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda) q(\mathcal{M} | \mathcal{D}_{\mathcal{E}}) d\mathcal{M},$ where $\lambda \in [0, 1]$. In particular, we define

 $q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 0) = q(\pi | \mathcal{M}) = \delta(\pi | \mathcal{M})$ $q(\pi | \mathcal{M}, \mathcal{D}_{\mathcal{E}}, \lambda = 1) = q(\pi | \mathcal{D}_{\mathcal{E}})$

Sampling Policies

Ensemble Sampling (PS). Given the posterior distributions, it remains to specify the sampling approach for policies. The simplest sampling strategy is uniform sampling,

 $\pi \sim \mathcal{U}(\{\pi_{1,1}, ..., \pi_{N,M}\}).$

Optimistic Ensemble Sampling (OPS). PS may overly explore unpromising regions, hence we propose OPS, which gradually discards unpromising ensemble members.

$$p_k(\pi = \pi_i) \coloneqq \frac{\exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_i, l) / \tau\right)}{\sum_{j=1}^{N \cdot M} \exp\left(\sum_{l=1}^k R_{\mathcal{E}}(\pi_j, l) / \tau\right)},$$

where τ controls the level of optimism, and $R_{\mathcal{E}}(\pi_i, l)$ is the empirical cumulative reward of π_i at the l_{th} episode.

Practical Algorithm: (0)PS-MBPO

Require: Initialize an ensemble of dynamics models $\Theta = {\{\hat{\theta}_n\}_{n=1}^N}$
i.i.d. $\sim q(\boldsymbol{\theta})$.
Require: Initialize an ensemble of policy networks $\Phi =$
$\{oldsymbol{\phi}_{n,m}\}_{n,m=1}^{N,M} ext{ i.i.d. } \sim q(oldsymbol{\phi}).$
Require: Initialize empty datasets $\mathcal{D}_{\mathcal{E}}$ and $\{\mathcal{D}_{\mathcal{M}}^{n,m}\}_{n,m=1}^{N,M}$. Real data
vs. synthetic data ratio λ .
1: for K episodes do
> /* Dynamics training. (Line 2) */
2: Train the ensemble models Θ on $\mathcal{D}_{\mathcal{E}}$ using MLE.
> /* Policy sampling. (Line 3) */
3: Sample a policy π from Φ uniformly at random or based
on the optimistic distribution .
4: Sample state s_1 from the initial state distribution $ ho(s)$
5: for $h = 2 : H$ steps do
> /* Data collection. (Lines 6-11) */
6: $\mathbf{s}_h = \text{rollout}(\text{world dynamics } \mathcal{E}, \pi, \mathbf{s}_{h-1}, \# \text{steps } 1)$
7: Add \mathbf{s}_h to $\mathcal{D}_{\mathcal{E}}$
8: Sample state $\mathbf{s} \sim \mathcal{D}_{\mathcal{E}}$
9: for each model <i>n</i> , policy <i>m</i> do
10: $\mathcal{D}_{\mathcal{M}}^{n,m} = \text{rollout}(\text{dynamics } \hat{\theta}_n, \text{ policy } \hat{\phi}_{n,m}, \text{ s, } R)$
11: Created mixed dataset $D = \lambda \mathcal{D}_{\mathcal{E}} + (1 - \lambda) \mathcal{D}_{\mathcal{M}}^{n,m}$
> /* Policy optimization (Line 12) */
12: $\hat{\phi}_{n,m} = \text{update-policy}(\hat{\phi}_{n,m}, D, \#\text{steps } G)$
13: end for
14: end for
15: Update the optimistic policy distribution.
16: end for

Experimental Results

2. Ablation Studies

Figure: Visualization of the visited state space of PS-MBPO (top left) and MBPO (top right) on Window-open-v2.

Figure: Left: Ablation study on the performance of with (solid curves) and without (dashed curves) the sampling step. Right: Average reward for varying number of dynamics model (N) and policies (M).

Figure: The optimistic weights of the first 100K iterations (left) and during the entire training process (middle), and the reward curve (right) on Cartpole-Swingup.